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Abstract
Root cause analysis (RCA) methods for effectively identifying critical causes of abnormal
processes have drawn attention because manufacturing processes have become larger in scale
and more complicated. However, existing methods for building automatic RCA models suffer
from the disadvantage of typically requiring an expert’s knowledge. In addition, without a
dataset representing the causal relationship of multivariate processes, it is difficult to provide
useful information for an RCA. Although data-driven RCA methods have been presented, most
are based on classification models. Considering that product quality is defined as a continuous
variable in many manufacturing industries, classification models are limited in deriving root
causes affecting the quality level of the product. In this study, we propose a regression model-
based RCA method, named quality-discriminative localization, which consists of a
convolutional neural network (CNN)-based activation mapping of multisensor signal data. In
our proposed method, the CNN predicts the product quality of a continuous variable. Activation
mapping then extracts causal maps that highlight significant sensor signals for each product.
To identify the root causes, we generate a root cause map from the weighted sum of quality
and causal maps. We consider root causes as locations of the abnormal process and processing
time from localized activation scores on the root cause map. We demonstrate the usefulness of

the proposed method in experiments with real data from a steel manufacturing process. Our
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results show that the proposed method successfully identifies root causes with distinct sensor

signal patterns.

Keywords: root cause analysis, multisensor signal data, convolutional neural network,

activation mapping, quality-discriminative localization, steel manufacturing
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1. Introduction

Root cause analysis (RCA) plays a key role in maintaining stable manufacturing processes. An
RCA aims to determine the critical causes leading to abnormal processes and product defects
(Mahadevan & Shah, 2009). Recently, RCA methods have drawn attention because modern
manufacturing processes have become more automatic, with processes linked to each other (Jia,
Lei, Guo, Lin, & Xing, 2018). Once a process has an abnormal event with an unknown root
cause, it adversely affects other processes. In particular, in large-scale and complex
manufacturing systems, failing to detect root causes leads to the recurrence of problems, which
can, unchecked, engender machine breakdowns, and decrease productivity (Weidl, Madsen, &
Israelson, 2005). Therefore, an RCA model that appropriately explains the relationship
between process states and product quality is required.

The purpose of this study is to propose an RCA model for understanding root causes
that consider the following issues: First, abnormal signals, such as noisy symptoms, should be
detected because they are directly associated with abnormal process states and decreased
product quality. Second, the RCA model has to identify multilevel causes since the problems
occur in relation to multivariate processes and processing times. Third, RCA methods need to
detect not only temporary causes but also the unknown root causes that intrinsically lead to
abnormal processes.

With advanced sensor technology, real-time multisensor signal data can be collected
in many industries (Ronao & Cho, 2016; Wang, Chen, Hao, Peng, & Hu, 2019, Jiang, Hu, Liu,
Yu, & Wu, 2016; Gong et al., 2019). Such sensor data represent sequential processes and
processing time information that determines product quality. When the datasets include the
causal factor, an RCA basically involves two steps: (1) construction of a predictive model and
(2) identification of the root cause. The prediction model explains the relationship between

process states and product quality, then detects the root cause from the sensor data with the
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highlighted parameters of the predictive model (Mahadevan & Shah, 2009; Chien, Hsu, &
Chen, 2013).

In general, probabilistic and deterministic models are two approaches for RCA. In
probabilistic model-based RCA, Bayesian networks that can achieve probabilistic reasoning
have been widely used. These Bayesian networks derive the posterior probabilities and can
detect the changes in sensor data (Weidl, Madsen, & Israelson, 2005; Nawaz, Arshad, & Hong,
2014; Liu, Liu, Cai, & Zheng, 2015; Wee, Cheah, Tan, & Wee, 2015). Weidl, Madsen, and
Israelson (2005) proposed an object-oriented Bayesian network, which is a probabilistic
graphical model that performs reasoning under uncertainty. Nawaz, Arshad, and Hong (2014)
and Liu, Liu, Cai, and Zheng (2015) considered the cause and effect relationships between root
causes, equipment, and process parameters using a Bayesian network. Furthermore, Wee,
Cheah, Tan, and Wee (2015) proposed a Bayesian belief network-based causal knowledge
model that provides causal strength using a fuzzy cognitive map. However, these studies are
knowledge-based RCA models that depend on an expert’s knowledge (Lee, Cheon, & Kim,
2017). Although they are useful for identifying immediate causes, requiring an expert’s
knowledge is a disadvantage in building automatic RCAs in large-scale systems.

Data-driven RCA methods based on deterministic models have become more attractive
in modern industries because they can derive root causes from observations without model
uncertainty (Li, Qin, & Yuan, 2016). Chien, Hsu, and Chen (2013) used Hotelling’s T? for
sensor variable selection and analyzed the association between faulty products and sensor
variables using decision trees. Mahadevan and Shah (2009) proposed a one-class support vector
machine to identify abnormal processes and used support vector machine recursive feature
elimination to determine the root causes. Although these methods perform reasonably well
within the industrial realms for which they were designed, there is still plenty of room for

improvement. Many feature selection methods suffer from the computational complexity in
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large volume datasets. Furthermore, rule-based models, such as decision trees, facilitate the
interpretation of results, but they cannot be readily used with raw sensor signals.

Recently, with the surging popularity of deep learning for its computational and
predictive performance, deep learning-based RCA models have become the prominent
methods in various fields (Zhang, Peng, Wu, Yao, & Guan, 2017; Zhang, Peng, Li, Chen, &
Zhang, 2017; Jia, Lei, Guo, Lin, & Xing, 2018). Deep neural networks directly use multiple
sensor signals as input and automatically learn the desired information from the input data. For
the diagnosis of defect causes in manufacturing processes, convolutional neural networks
(CNNs) have been used. For example, Lee, Cheon, and Kim (2017) proposed a CNN structure,
in which a receptive field tailored to multisensor signals slides along the time axis, to extract
fault feature maps providing abnormal process variables and time information. In addition, Yao,
Zhang, Yang, and Gui (2020) attempted fault diagnosis with CNN and a temporal attention
mechanism to extract meaningful temporal parts from the sensor signals. However, these RCA
methods have usually been performed to classify whether a product is defective or not.
Although such classification model-based RCAs show good performance, they cannot be
applied in situations where product quality is represented by continuous values. For example,
in semiconductor manufacturing processes, quality is determined by failure rates. In
steelmaking processes, quality can be determined by numerical values such as the weight
deviation between the target and output products.

Only a few RCA methods have been presented to handle regression problems. Xia,
Xia, Wan, and Cai (2012) used spectral regression for extracting fault feature extraction based
on multisensor signal data. Borchert, Suarez-Zuluaga, Sagmeister, Thomassen, and Herwig
(2019) attempted to use a partial least squares regression model that can derive variable
importance and compared the performances between when they used raw sensor signals and

when they used features extracted by principal component analysis. However, when using
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high-dimensional sensor signals, such approaches require feature selection or an extraction step,
which are cumbersome for users. In particular, such approaches experience difficulty in
deriving observation-wise causes because they focus on selecting significant variables. Hence,
an effective and efficient RCA method for regression problems is required.

In the present study, we propose a regression model-based RCA approach that
combines a CNN model and activation mapping with multisensor signal data. The key
advantage of the proposed method is it visually explains which parts of the sensor signal cause
abnormal quality. Thus, we named the proposed method quality-discriminative localization.
The main contributions of this study can be summarized as follows:

(1) We propose a quality-discriminative localization method that localizes sensor signals
representing causes of abnormal quality. In particular, the proposed method derives a root cause
map (RCM) that emphasizes locations of process and processing time that have the most impact
on decreased product quality.

(2) We apply the proposed method to a steel manufacturing system that consists of sequential
processes that can affect product quality. To the best of our knowledge, this is the first attempt
to use regression model-based RCA based on discriminative localization for sensor signals in
a steel manufacturing process.

The remainder of this paper is organized as follows. Section 2 introduces the
components of CNN. Section 3 describes the details of the proposed method. Section 4 presents
experiments that examine the performance of the proposed method using real data from the

steel manufacturing process. Finally, Section 5 contains our concluding remarks.

2. CNN

2.1. Components of CNN



Quality—discriminative localization for a root cause analysis of multisensor signal data

A CNN is composed of a feature extraction network and a prediction network (LeCun, Bottou,
Bengio, & Haffner, 1998). The feature extraction network mainly consists of convolutional,

batch normalization (BN), and pooling layers (Badrinarayanan, Kendall, & Cipolla, 2017).

/ /L

| P BN
X
% N (u. 0) y-X+p
Normalization Scaling & Shifting
Convolutional layer Batch-normalization layer Max-pooling layer
(A) ®B) ©

Figure 1. Illustration of components of the CNN: (A) convolutional layer, (B) BN layer, and

(C) max-pooling layer.

Figure 1 illustrates the roles of each component of the CNN. Figure 1(A) shows the
convolutional layer that extracts local features and constructs the feature maps, which are
calculated by convolving the input with a learned convolutional kernel and applying a nonlinear
activation function element-wise on the convolved results. The extracted feature maps contain

distinctive features of input data. The convolution operation is followed by the activation

functions, including the sigmoid, hyperbolic tangent, and rectified linear unit (ReLU) functions.

These functions derive nonlinear features of the input that allow the network to make the
learned features more dividable and are usually placed between two convolutional layers (Gu
et al., 2018; Krizhevsky, Sutskever, & Hinton, 2012).

The BN layer is achieved through a normalization step that reduces the covariate shift

and accelerates the CNN’s training process (Ioffe, & Szegedy, 2015). As can be seen in Figure
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1(B), the BN layer first normalizes the convolved features, then performs the linear
transformation of the normalized features with scaling and shifting parameters to prepare them
for the activation unit. The BN layer is usually added right after the convolutional layer and
before the activation unit.

A pooling layer that reduces the spatial size of the feature maps to achieve shift-
invariance is typically added after the convolutional layers and a BN layer (Badrinarayanan,
Kendall, & Cipolla, 2017). Various pooling methods exist, including average pooling, max
pooling, and global average pooling (GAP) (Gu et al., 2018). Among them, the max-pooling
layer is widely applied in CNNs. As shown in Figure 1(C), the max-pooling layer is a
downsampling layer that samples a maximum value from the feature maps and then contributes
to reducing the number of parameters.

The GAP layer (Lin, Chen, & Yan, 2013) is also a downsampling operation, but it

calculates the average values of each feature map, as follows:

1
F = W Zx'yfkl(xr ¥), (D

where fi(x,y) is the k™ feature map in the /" layer, (x, y) represents the x- and y-axes information
of the feature map, and W and H represent width and height feature maps. This gives the global
average value I*. The GAP layer is typically added after the feature extraction network and
before a prediction network. Instead of adding a fully-connected layer for flattened features,
the summarized vector /¥ is fed directly into the activation function. One advantage of a GAP
layer over a fully connected layer is that it makes it easier to construct an interpretable CNN
by enforcing correspondences between feature maps and labels.

The prediction network comprises one or more dense fully-connected layers that are

added with activation functions for each task. For a classification task, a soft-max function is
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used. In contrast, a linear activation function that directly passes the input value is used to build
a regression model. The last dense layer has one neuron with a linear activation function that
performs a linear combination of flattened feature values and learnable weight parameters (Gu

etal, 2018).

2.2. Discriminative localization

A number of previous works have proposed visualizing the causality of CNN
predictions by highlighting pixels that play an important role in prediction (Zhou, Khosla,
Lapedriza, Oliva, & Torralba, 2016; Selvaraju et al., 2017). The most relevant to our study is
the class activation mapping (CAM) approach to class-discriminative localization; Zhou,
Khosla, Lapedriza, Oliva, and Torralba (2016) proposed a CAM method for identifying
discriminative regions using a restricted class of image classification. They replaced fully-
connected layers with convolutional layers and a GAP layer to produce class-specific feature
maps. After training the CNN, the CAM derives an activation map by a weighted combination
of the resulting feature values of the GAP and weights of a soft-max activation function. The
activation map then explains which parts of an input image were looked at by the CNN for

assigning labels. The activation map M.(x, y) of the n™ observation is derived as follows:

My (x,y) = Xi=1 Fie* Wi, @

where F and wi” are, respectively, the GAP value and learned weights of the last dense layer.
In this study, we build a regression version of CNN-based activation mapping that can be used
to predict the quality label of a continuous variable and to highlight the critical regions of two-

dimensional multisensor signals data.
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3. Quality-discriminative localization

Our goal is to derive root causes that can be visually explained for multisensor signal data. In
this section, we present the architecture of the CNN, followed by the quality-discriminative
localization method.

Convolutional Neural Network

Multisensor Signal Data Feature Extraction Prediction
n' product Encoder Decoder GAP
AVVWVVWWY GAP(f) " %
~ . | -
E : }61 7
; 'V\’VW\N\J\’\NVW\N\IV\/\AWA GAP(f3) @ V. I
2 VWY 6ar() 2@y,
-
= WA WA GAPUR) 1B w,
Process Time (t) BN ConvBN+RU [ GAP
Max pooling Up sampling
——
Quality-discriminative localization
Identification of product-wise causes CM,(t,s)
h f2 f3 fr @ W
= I 1
a | |
wyf W+ Ml wil=| & EHZ
8wy
[ B & VWA
Process Time (t)
Identification of root causes RCM (t,s)
CM; CM, CM, CM,,
Al miv ] o T ‘ .
o (N ' A @
mE EEmeg yl S ol o e e e ey yz R s P e | 5‘73 + +:m: N }’}n: : . %
LA dd il L EA b ke " 'wv»“
e i AR T - 9
<

Figure 2. The proposed structure of the CNN and quality-discriminative localization.

Figure 2 shows the proposed structure of the CNN and quality-discriminative
localization. For the feature extraction network of the CNN, we designed an encoder-decoder
structure to generate output feature maps that are equal in size to the input data. The encoder

is composed of three convolution blocks where each block includes two convolutional layers.
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The output of each convolutional layer is fed into the BN with a ReLU activation function. A
max-pooling layer then performs a downsampling operation. These layers form a block, and
each block is repeatedly stacked three times. The decoder consists of a structure opposite the
encoder’s structure. To construct feature maps having the same size as the input, we add the
upsampling layer instead of the max-pooling layer for each block. We make 32 feature maps
with two-dimensional convolutional kernels of 33 size for all convolutional layers. Moreover,
we use two-dimensional filters of 2x2 size for the max-pooling and upsampling layers. For the
CNN’s prediction network, a two-dimensional GAP layer is added. The GAP layer averages
the last convolutional feature map £i(z,s), and the resulting values, %, are directly fed into the
dense layer, which includes a linear activation function. The dense layer has one neuron, and
the linear activation function enables the construction of the regression model. Thus, the

formulation of the CNN regression can be summarized as follows:

Y:W'F:Wl'F1+W2'F2+"‘+Wk'Fk, (3)

where Yis a response variable, described by averaged feature maps F of extracted feature maps
and weight parameters W. Note that W can be considered the coefficients that allow us to
identify the significant variables in the regression model. After training the model, we use the
trained weight W as the importance for each /'y when deriving the activation map.

We train the CNN model such that cost function Z is minimized. Cost function L can

be defined as follows:

N
1
L= N;(yn ~ 5% @
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where N is the number of observations, y, is the n™ response variable, and #, is the predicted
value, which is the output of the CNN. The CNN is trained by an Adam optimizer, which is an
algorithm for first-order gradient-based stochastic objective functions.

We now present the quality-discriminative localization for RCA. The purpose of the
quality-discriminative localization is to visually emphasize sensor signals that are the root
causes of abnormal quality. As shown in Figure 2, we first derive causal maps with activation
mapping for all products and then identify the root causes with the localized sensor signals in
the RCM. Having trained the CNN, we conduct the activation mapping to produce the

following causal maps by the weighted sum of w;'| and fi(z,s):

K
CMa(t,5) = ) filt,5) - Iwil, )
k=1

where [wy| is an absolute value of wy that can be considered the importance of each feature map
Jfi(t,s). The score of CM,(t,s) highlights the important regions of the input data corresponding
to the label. Considering that the regression model determines important variables based on the
magnitude of weights, we use the absolute value of w;. The CM,(%,s) explain the causes of the
predicted quality of a product via localizing sensor signals. If a region contains high CM,(%,s)
scores, the sensor signals of the corresponding region can be considered significant causes.

In the present study, the root causes are defined as sensor signals that represent
abnormal processes and processing time. To identify the root causes, we obtain a quality-

weighted activation map, named RCM. The RCM is calculated as follows:

N
RCM(t, s) = Z CM, (t,5) - §y, ©)
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where CM,(t,5) is an activated map of the n™ observation and §,, is a predicted value. Having
constructed the RCM, we examine the localized positions that have scores exceeding percentile
h. Thus, we interpret that the localized sensor signal is the indicator for the cause of §,,. The
causal maps show the causes of defects in the products, and the RCM explains the root causes

accounting for all product quality. Algorithm 1 shows the procedure of the quality-

discriminative localization.

Algorithm 1. Quality-Discriminative Localization

Input: Data X and y
Output: RCM'(t, 5)
[> Train the model
w <— Initialize the parameters
Repeat
3\7 — MOdEI(X) = Fk Wi
L==-3N (O — n)?
w <« Update the parameters using the gradients of
until the convergence of parameters using
[> Construct the RCM
RCM(t, s) < Initialize the elements to zero of 7 by s matrix
for n=1 to N do
CMa(t, 5) « Sy FR(L,5) - [wi |
RCM(t, s) < RCM(t, s) + CMn(t, 8) - ¥
end for
[> Identify the root causes

Let 4 be a hyperparameter that indicates a threshold with percentile.
If RCM(t, s) > h then RCM(t, s) = root cause’s location

RCM (¢, s) < root cause’s location

4. Experiments

4.1 Datasets

We used multisensor signal datasets obtained from a steel manufacturing process that produces
steel from iron ore and scrap. The whole process is divided into four subprocesses: steelmaking,
refining, continuous casting, and forming (Laha, Ren, & Suganthan, 2015). The steelmaking

involves the input of raw materials being melted in a blast furnace. Refining reduces the
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impurities that can make the resulting molten steel brittle. Next, continuous casting places the
molten steel into a cooled mold, causing it to solidify into a thin steel shell. It is then made into
an intermediate-stage product such as a slab, bloom, or billet. The steel is formed into various
shapes, often by hot rolling, a process that eliminates cast defects and achieves the required
shape.

In this study, we focus on RCA for the continuous casting process, which plays an
important role in determining the steel’s quality. Figure 3 shows a procedure for the collection
of multisensor signal datasets in continuous casting that consists of cooling, rolling, and cutting
processes. Once molten steel enters the continuous casting process, the cooling process
decreases its temperature. It is then rolled into the shape of an intermediate-stage product. In
the cutting process, the molten steel is cut to the desired length. After the cutting process, we
measure the difference between the weight of the intermediate-stage product and its target

weight. This weight deviation is considered the quality of the final steel product.

Continuous Casting

“ Mklten steﬁ/l Cooling Cooling & Rolling Cutting Quality

w— e 1QQ2Q7Q

Steel melting furnace

» —  Semi-product
('K T"""‘"O 8605068880
Sensor 1 AWV VW %
Sensor 2 Target weight — Output weight
Sensor 3 NWWWJ\@\J(U’\I\J“ \rN\’W‘W‘“’ => Quality(weight deviation)

> Sensor 4 WWWWWWWWWWWIW
> Sensor 5 VVVVNVVANNW

v

\,

v

v

Figure 3. Tllustration of data collection from the continuous casting process in the steel

manufacturing process.
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We collected 10 datasets from multiple sensors attached to each piece of the processing
equipment. Table 1 shows a summary of the datasets. Each dataset was obtained from different
product types and process paths to verify that the proposed method shows robustness and
applicability under various process states. We set the time to 100 seconds for collecting signals
for each sensor. To form the input data of the CNN model, we transformed the multiple sensor
signals into two-dimensional data. Consequently, each of the products has a two-dimensional
dataset that consists of the process ID of the y-axis and the processing time of the x-axis. The
response variable is the weight deviation, which is measured after the cutting process, and its
range is between 0 and 100. The larger the value of the response variable (weight deviation),

the lower the quality.

Table 1. Summary of the two-dimensional multisensor signal datasets.

Dataset Number of products Number of sensors Processing time (secs)
1 397 154 100
2 253 148 100
3 532 170 100
4 906 153 100
5 1,023 165 100
6 1,017 152 100
7 916 153 100
8 771 201 100
9 949 183 100
10 934 177 100

4.2 Evaluation of the predictive performance of the CNN

We evaluated predictive performance to demonstrate the usefulness of the proposed
CNN for RCA. We performed a five-fold cross-validation using 80 percent of the data for
training and 20 percent of the data for validation. We trained the CNN with a batch size of
eight and epoch size of 100 for all datasets. We used the following performance measures with

R’, mean absolute error (MAE), and root mean squared error (RMSE):
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Zﬁﬂlgyn - ¥)?
1 ~
MAE = N Z |yn _yn|! (8)
i=1
1 N
RMSE = |~ (= 92, ©)
n=1

where y, and §, are the actual and predicted weight deviations of the " observation,
respectively. R’ represents the coefficient of determination calculated by the square of the
correlation between y and y. MAFE is the average value over the validation data of the absolute
differences between the actual and predicted values where all individual differences have equal
weights, while RMSE is the square root of the mean squared difference between the actual and
predicted values for the validation data. Table 2 presents the averages and standard deviations
for the performances of the five-fold cross-validations. The average R’, MAE, and RMSE of all
datasets are listed in the table’s last row. The average R’ was 0.74, indicating that the proposed
CNN structure has the robustness to explain the relationship between the sensor signals and
product quality in various process states. The average MAF and RMSE were 5.77 and 8.75,
respectively, indicating that the CNN correctly predicts the product quality where the quality

variable is distributed between 0 to 100.

Table 2. The average of the predictive performances in five-cross validations. Standard

deviations are presented in parentheses.

Dataset R-squared MAE RMSE
1 0.68 (0.04) 5.60(0.42) 7.90 (0.60)
2 0.64 (0.13) 5.29(0.81) 7.42 (1.18)
3 0.69 (0.10) 4.84 (0.65) 6.73 (1.15)
4 0.75 (0.08) 4.48 (0.78) 5.86 (0.90)
5 0.76 (0.06) 5.24(0.72) 6.86 (0.93)
6 0.70 (0.10) 4.78 (0.63) 6.29 (0.91)
7 0.88 (0.02) 3.58 (0.17) 4.84 (0.43)
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8 0.70 (0.08)

9.72 (1.14) 12.96 (1.78)
9 0.82 (0.05) 7.21 (0.80) 9.41 (1.11)
10 0.76 (0.02) 6.97 (0.27) 9.21 (0.49)
Average 0.74 (0.07) 5.77 (0.64) 8.75 (0.95)

4.3 Evaluation of the localized sensor signals of the RCM

With the regression-trained CNN, we performed the quality-discriminative

localization for RCA. We first extracted causal maps, which can provide temporary causes for

each product, and then generated an RCM to identify the root causes.

Figure 4 shows two examples of the causal maps where the (A) causal map has the

lowest weight deviation and the (B) causal map has the highest weight deviation in dataset 1.

In the causal maps, the red highlighted regions exhibit more critical factors than the blue

regions for predicting weight deviation. We consider that the red highlighted sensor signals

represent the causal process states of predicted quality; thus, these regions allowed us to derive

the location of abnormal sensor signals for process ID and processing time.

Causal Map (weight deviation: 0)

Process ID

Processing Time

(A)

Process ID

Causal Map (weight deviation: 71)

Processing Time

(B)

Figure 4. Causal maps: (A) causal map of a steel product with the lowest weight deviation and

(B) causal map of the steel product with the highest weight deviation. The red regions indicate

more important regions for predicting weight deviations.
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As can be seen in Figure 5, we generated RCMs by the weighted sum of quality and
causal maps and demonstrated three-dimensional activation maps for each dataset. In each
RCM, the x-, y-, and z-axes indicate the process ID, processing time, and quality-weighted
activation scores, respectively. The min-max normalization was performed to represent the
quality-weighted activation scores between O and 1. The hyperparameter # was applied with a

threshold of the 99th percentile to determine the root causes. The red highlighted regions of the
RCMs indicate major causes of abnormal quality.

RCM for Dataset 2 RCM for Dataset 3 RCM for Dataset 4 RCM for Dataset §

RCM for Dataset 1
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Figure 5. Results of the RCMs: The red plain indicates the threshold with the 99th percentile

of quality-weighted activation scores.

To statistically verify that the localized regions of process ID and processing time
exhibit significant causal sensor signals, we conducted a two-sample #-test for the comparison
of sensor signals. We grouped the 100 signals into normal and abnormal classes, with 50 signals
in each class. We summarized each of the sensor signals into seven statistical categories: mean,

variance, min, max, median, range, area, and correlation coefficient. The area represents a

summation of a signal for all time steps. We expected that, if each class has distinctive signal
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patterns, such statistics could represent the characteristics for the sensor signals. We also
conducted a correlation analysis to derive a correlation coefficient for considering overall time
information. The correlation analysis was performed between different sensor signals, from
which we obtained a correlation coefficient matrix. We used an upper triangular matrix,
excluding diagonal elements, as the input to the two-sample #-test and expected that the
correlation coefficients of the sensor signals in the same class would be higher than the
correlation coefficients from different classes. Using these summarized statistics, we
performed a two-sample t-test to confirm the differences between the normal and abnormal

groups. The 7 statistic is calculated by the following equation:

Xnormal - Xabnormal

t = y
2 2 10
Snormal _ Sabnormal ( )
Nnormal Nabnormal

where Nyorma and Nasnormal are the sample sizes, S%norma and S%apnormar are the sample variances,
and Xnormal and Xabnormal indicate the average values of the statistics from the sensor signals. We
assumed the statistics have no equal variance.

Table 3 shows the resulting p-values of the two-sample t-tests. In each dataset, we
listed three sensors that rendered high activation scores. The p-values, which are less than 0.05,
are highlighted in bold. In some cases, we could not obtain the p-values because of the inflated
t statistics caused by zero variance (indicated by the hyphens in Table 3). Most sensors exhibit
p-values less than 0.05, implying that selected sensors have distinct features of the signals.
However, we observed some cases with nonsignificant p-values (e.g., sensor 66 of dataset 4,
sensor 119 of dataset 5, sensor 127 of dataset 6, and sensor 124 of dataset 7). We believe that
these cases cannot be sufficiently explained based on the statistics used in this study.

Nevertheless, the results showed that most localized signals exhibit significant differences.
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Table 3. The p-values of the two-sample t-test for the significant sensors. Those in boldface

represent p-values of less than 0.05.

p-value
Datasct SEISOF . . . Correlation
ID Mean  Min Max Variance Median Range  Area Cocfficient
ocfficien
123 0.00 - - 0.00 0.00 - 0.00 0.00
1 149 0.02 - 0.02 0.02 - 0.02 0.02 -
151 0.00 - 0.00 0.00 - 0.00 0.00 -
126 0.58 0.61 0.20 0.11 0.72 0.20 0.58 0.00
2 116 0.00 - - 0.00 0.00 - 0.00 0.00

106 0.00 0.00 0.00 022 0.00 021 0.00 0.00
167 0.00 0.00 0.00 0.10 0.00 0.08 0.00 -

3 158 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
157 0.01 0.02 = 0.00 0.32 0.02 0.01 -
66 0.14 B 0.15 0.13 0.08 0.15 0.14 -
4 65 0.00 0.00 0.00 - 0.00 = 0.00 -
64 0.00 0.00 0.00 0.15 0.00 0.17 0.00 -
121 0.06 - - 0.07 0.17 - 0.06 0.00
5 119 0.87 - 0.55 0.78 s 0.55 0.87 .
137 0.01 0.30 0.99 0.83 0.00 0.79 0.01 0.00
125 0.13 - 0.02 0.04 - 0.02 0.13 -
6 127 0.56 0.32 - 0.87 0.81 0.32 0.56 -
141 0.00 0.23 0.00 0.02 0.00 0.00 0.00 0.00
2 0.16 0.00 0.00 0.00 0.10 0.00 0.16 0.59
7 124 0.20 - 0.84 0.47 - 0.84 0.20 -
4 0.88 0.00 0.00 0.00 0.71 0.00 0.88 0.39
180 0.62 0.00 0.05 0.15 0.08 0.07 0.62 0.00
8 184 0.04 - - 0.21 0.53 - 0.04 0.00
182 0.27 1.00 - 052 1.00 1.00 0.27 0.00
58 0.00 0.00 0.00 042 0.00 043 0.00 0.30
9 57 0.00 0.00 0.00 0.51 0.00 0.55 0.00 0.88
67 0.00 0.00 0.00 0.42 0.00 0.36 0.00 0.99
15 0.00 0.00 0.00 0.66 0.00 033 0.00 0.69
10 14 0.00 0.00 0.00 - 0.00 = 0.00 =
13 0.00 0.00 0.00 041 0.00 0.98 0.00 0.81

5. Conclusions
We have proposed an RCA method called quality-discriminative localization. With
multisensor signal data, the regression-trained CNN provides product-wise causal maps and

generates an RCM to identify the most causal regions in multivariate processes. The proposed
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method allows us to interpret the multisensor signals by highlighting the distinctive patterns.
In addition, through real-process sensor datasets, we demonstrate that the proposed method
shows applicability and robustness with satisfactory predictive performance in the steel
manufacturing process. The causal maps can be used for monitoring the causal process and
processing time for all products. Furthermore, the RCM can be applied for discovering the root
causes as processes that frequently cause abnormal quality. To verify the interpretability of the
proposed method, we conducted a two-sample t-test for the time-series data and observed that
the localized sensor signals of the two groups showed statistically significant differences. We
believe that our study is the first attempt to demonstrate the applicability and usefulness of
sensor signal regression-based discriminative localization to perform RCA in the steel
manufacturing process.

Although the proposed method shows promising results, the activation mapping using
the output of a GAP layer has a limitation that leads to information loss because the GAP layer
summarizes the last feature maps. Nevertheless, CNN learns the parameters for predictions,
even when using the summarized values of the GAP; verifying the predictive performance
before conducting the activation mapping is essential. Moreover, it would be interesting to
employ RCA with an alternating discriminative localization method, such as a gradient-based
activation mapping that minimizes the information loss. The proposed CNN also has some
limitations posed by the two-dimensional kernels in the convolution process. The two-
dimensional kernel extracts a pixel-wise element of the local input. When we perform root
cause identification, the pixel-wise activation scores involve risk because the element of each
pixel can contain peripheral information from the previous input, i.e., the localized regions may
represent not only the location of the target pixel but also the surrounding location. However,

since the interaction relationship is the main factor in the CNN yielding powerful performance,

® 23



WlE 2MXIE et Lt F2AH MOL HE=2E (1)

24 @

—=

we expect that if we show good predictive performance using a one-dimensional kernel, we
can minimize the concerns.

Concerning how to use the discriminative localization via activation mapping, using
the proposed method for identifying optimal processes is an interesting direction for future
work. Despite the abnormal sensor signals, the detection of optimal sensor signals that explain
the normal quality can be used for discovering the conditions of stable processes. We believe
that the proposed method can be a cornerstone for using activation mapping in multiple sensor
data-based root cause monitoring and be a useful tool for various manufacturing industries that

require multilevel causal analysis for examining the characteristics of sequential processes.

References

Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). Segnet: A deep convolutional encoder-
decoder architecture for image segmentation. /EEE transactions on pattern analysis and
machine intelligence, 39(12), 2481-2495.

Borchert, D., Suarez-Zuluaga, D. A., Sagmeister, P., Thomassen, Y. E., & Herwig, C. (2019).
Comparison of data science workflows for root cause analysis of bioprocesses. Bioprocess
and biosystems engineering, 42(2), 245-256.

Chien, C.F.,Hsu, C. Y., & Chen, P. N. (2013). Semiconductor fault detection and classification
for yield enhancement and manufacturing intelligence. Flexible Services and Manufacturing
Journal, 25(3), 367-388.

Gong, W, Chen, H., Zhang, Z., Zhang, M., Wang, R., Guan, C., & Wang, Q. (2019). A novel
deep learning method for intelligent fault diagnosis of rotating machinery based on improved
CNN-SVM and multichannel data fusion. Sensors, 19(7), 1693.

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., ... & Chen, T. (2018). Recent

advances in convolutional neural networks. Pattern Recognition, 77, 354-377.



Quality—discriminative localization for a root cause analysis of multisensor signal data

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

Jiang, P., Hu, Z., Liu, J., Yu, S., & Wu, F. (2016). Fault diagnosis based on chemical sensor
data with an active deep neural network. Sensors, 16(10), 1695.

Krizhevsky, A., Sutskever, 1., & Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems (pp.
1097-1105).

Laha, D, Ren, Y., & Suganthan, P. N. (2015). Modeling of steelmaking process with effective
machine learning techniques. Expert systems with applications, 42(10), 4687-4696.

LeCun, Y, Bottou, L., Bengio, Y., & Haftner, P. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IELE, 86(11), 2278-2324.

Lee, K. B, Cheon, S, & Kim, C. O. (2017). A convolutional neural network for fault
classification and diagnosis in semiconductor manufacturing processes. /LELE Transactions
on Semiconductor Manufacturing, 30(2), 135-142.

Li, G, Qin, S. J., & Yuan, T. (2016). Data-driven root cause diagnosis of faults in process
industries. Chemometrics and Intelligent Laboratory Systems, 159, 1-11.

Lin, M., Chen, Q., & Yan, S. (2013). Network in network. arXiv preprint arXiv:1312.4400.

Liu, Z., Liu, Y, Cai, B., & Zheng, C. (2015). An approach for developing diagnostic Bayesian
network based on operation procedures. Expert Systems with Applications, 42(4), 1917-
1926.

Mahadevan, S., & Shah, S. L. (2009). Fault detection and diagnosis in process data using one-
class support vector machines. Journal of process control, 19(10), 1627-1639.

Nawaz, J. M, Arshad, M. Z., & Hong, S. J. (2014). Fault diagnosis in semiconductor etch
equipment using Bayesian networks. Journal of Semiconductor Technology and

Science, 14(2), 252-261.

® 25



WlE 2MXIE et Lt F2AH MOL HE=2E (1)

26 ®

—=

Ronao, C. A, & Cho, S. B. (2016). Human activity recognition with smartphone sensors using
deep learning neural networks. Expert systems with applications, 59, 235-244.

Selvaraju, R. R., Cogswell, M, Das, A., Vedantam, R, Parikh, D., & Batra, D. (2017). Grad-
cam: Visual explanations from deep networks via gradient-based localization.
In Proceedings of the IEEE international conference on computer vision (pp. 618-626).

Wang, J., Chen, Y., Hao, S., Peng, X, & Hu, L. (2019). Deep learning for sensor-based activity
recognition: A survey. Pattern Recognition Letters, 119, 3-11.

Weidl, G., Madsen, A. L., & Israelson, S. (2005). Applications of object-oriented Bayesian
networks for condition monitoring, root cause analysis and decision support on operation of
complex continuous processes. Computers & chemical engineering, 29(9), 1996-20009.

Wee, Y. Y., Cheah, W. P, Tan, S. C., & Wee, K. (2015). A method for root cause analysis
with a Bayesian belief network and fuzzy cognitive map. Expert Systems with
Applications, 42(1), 468-487.

Xia, Z., Xia, S., Wan, L., & Cai, S. (2012). Spectral regression based fault feature extraction
for bearing accelerometer sensor signals. Sensors, 12(10), 13694-13719.

Yao, Y., Zhang, S., Yang, S., & Gui, G. (2020). Learning Attention Representation with a
Multi-Scale CNN  for Gear Fault Diagnosis under Different Working
Conditions. Sensors, 20(4), 1233.

Zhang, R., Peng, Z., Wu, L., Yao, B., & Guan, Y. (2017). Fault diagnosis from raw sensor data
using deep neural networks considering temporal coherence. Sensors, 17(3), 549.

Zhang, W., Peng, G., Li, C.,, Chen, Y., & Zhang, Z. (2017). A new deep learning model for
fault diagnosis with good anti-noise and domain adaptation ability on raw vibration

signals. Sensors, 17(2), 425.



Quality—discriminative localization for a root cause analysis of multisensor signal data

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. (2016). Learning deep features
for discriminative localization. In Proceedings of the IEEE conference on computer vision

and pattern recognition (pp. 2921-2929).

e 27



PDF-GAN: Evading PDF Malware
Classifiers using Generative
Adversarial Networks

UHXL HE(MSetw)



PDF-GAN: Evading PDF Malware Classifiers using
Generative Adversarial Networks

Anonymous Author(s)

ABSTRACT

Recent research has shown that a small perturbation to an input may
forcibly change the prediction of a machine learning (ML) model.
Such perturbations are commonly referred to as adversarial exam-
ples. Early studies on adversarial examples have focused mostly
on ML models for image processing, and continuously expanded
to other applications including those for malware classification.
In this paper, we are interested in the problem to find adversarial
examples against ML-based PDF malware classifiers. We deem that
our problem is more challenging than those against ML models for
image processing because of the highly complex data structure of
PDF in comparison to traditional image datasets and of an addi-
tional constraint that the generated PDF should exhibit malicious
behavior. To resolve our problem, we propose a variant of gener-
ative adversarial networks (GANSs) that generate evasive variant
PDF malware (without any crash), which can be classified as be-
nign by various existing classifiers, yet maintaining the original
malicious behavior. Our model exploits the target classifier as the
second discriminator to rapidly generate an evasive variant PDF
with our new feature selection process that deliberately includes
unique features extracted from malicious PDF files. We evaluate
our technique against three representative PDF malware classifiers
(Hidost ’13, Hidost ’16 and PDFrate-v2) and further test its effec-
tiveness with AntiVirus engines from VirusTotal. To the best of
our knowledge, our work is the first to analyze the performance
against the commercial AntiVirus engines in addition to the public
benchmarks. Our results are quite encouraging; our model finds,
with extremely great speed, evasive variants for all selected seed
against state-of-the-art PDF malware classifiers. We argue that our
results against commercial AntiVirus engines may raise a serious
security concern in the presence of adversaries.

1 INTRODUCTION

Machine learning (ML) has extensively adapted in a large num-
ber of application areas including speech recognition and image
processing. One important such area is security, to which a va-
riety of ML-based techniques have been applied in recent years.
Several studies have empirically evinced a great potential and effec-
tiveness of ML in solving certain security problems like malware
detection [43, 53]. In particular, the ML techniques for malware
detection have been developed for years diverging to many dif-
ferent security problem domains, such as clustering of malware
families [15, 26], detection of malicious downloads [17, 41], detec-
tion of account misuse networks [19, 51], detection of commonly
exploited file formats (e.g., Java archives [44], documents [27, 32])
and detection of PDF malware [47-50].

Not surprisingly, as ML becomes a dominant means for malware
analysis, there is a growing temptation to find adversarial examples
(AEs) that can diminish its effectiveness. Many latest studies of
AE attacks on ML [14, 20, 23, 30] have demonstrated that a small

perturbation to an input may forcibly change the prediction result
of both ML and, newly surfacing, deep learning (DL) models. The
studies suggest that the victim of AE attacks can be anyone from
an entire spectrum of application areas where ML is applicable. As
a result, this gloomy fact poses a daunting challenge to developers
of ML models for malware detection [22]. Thus, it is crucial to build
a robust malware detectors or classifiers that are resistant to AE
attacks. One solution adopted by many in practice is to harden
their model by training it with all possible AEs against it taken
into account. For this, significant effort has been made to identify
AEs against existing ML-models for various malware detectors. In
this paper, we are interested in finding AEs that can be used to
evade all the current (academic and commercial) ML-based PDF
malware classifiers. Our interest originates from the fact [36] that as
malicious PDF files have been known to be the most dangerous type
of attack exploited by adversaries to date, ML-based techniques are
being actively studied and developed to mitigate them even most
recently.

Since its introduction, PDF has risen in great popularity and
become the de facto standard for many different purposes of infor-
mation sharing, such as text documents, data files and presentation
materials. PDF includes not only static content (e.g., texts and styles)
but also dynamic content (e.g., JavaScript code and action triggers).
The versatility of PDF files comes in their capability of displaying
such rich content on virtually all kinds of today’s computer systems
and platforms. The popularity and versatility have been capitalized
on by adversaries in a way that the PDF format files are used to
craft diverse attacks on viewer applications, inflicting extensive
damage on countless victims. One key attribute of PDF exploited by
adversaries is its high connectivity to other objects which facilitates
modification of a PDF file, ultimately leading to an injection of a
malicious load to the file. Another is the innate complexity of its file
format, which facilitates malicious contents being concealed from
the detectors. For example, JavaScript-based attacks deceive the
detectors by injecting Javascript code in multiple objects at different
locations inside the file. Such PDF malware is not only posing in the
present but also likely to pose in the future, an immense threat to
cybersecurity. It was reported by SonicWall [12], a private network
security company, that more than 47,000 new attacks related to
PDF files were discovered last year, and 73,000 PDF-based attacks
were discovered in March, 2019 alone.

To prepare for the flooding of future zero-day PDF malware,
much research has been done to improve the performance of PDF
classifiers by employing ML techniques. As the first work in this di-
rection, PDFrate-v1 [47] tackled the challenge with ML techniques
by using metadata and contents of PDF documents. The approach
characterized the documents’ attributes by hand-crafting 202 fea-
tures to train a random forest (RF) model for detection. PDFrate-
v2 [48] further improved the performance by taking advantage
of an ensemble training technique. Hidost [49, 50] attempted to
extract the files into a structural map and used it as a feature set
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for their train model. Support vector machines (SVMs) and RF are
used as classification models and both of them attain an impressive
performance of detection.

As ML techniques for PDF classification become advanced and
sophisticated, so do AE attack techniques for evading them. In prin-
ciple, the purpose of these attack techniques is generating evasive
PDF samples (1.e., AEs) against ML-based classifiers by picking and
manipulating structural features that the classifiers utilize for de-
tection. The early forms of AFE attacks, which we collectively call
mimicry attacks [21, 31, 45], aim to induce misclassifications of
the classifiers by camouflaging malicious PDF files as benign ones.
Unfortunately, mimicry attacks rely heavily on human expertise to
understand a given malicious PDF file before finding fake structural
features that will be added to the original file for aligning it with a
known benign file. This implies that the success of their techniques
would be strictly limited by human effort as well as their knowledge
of a complex structure of the PDF file format.

Researchers endeavored to overcome the limitation by minimiz-
ing human involvement. They proposed the evasion techniques
that can automate the process of generating evasive samples for
AE attacks. EvadeML [52] introduced a stochastic approach based
on genetic programming (GP), which repeatedly performs feature
manipulations based on a random mutation algorithm until an eva-
sive, yet malicious PDF sample is successfully obtained as output.
While the output sample maintains the input’s original malicious-
ness, it, unlike the input, is guaranteed to be evasive as it will
induce a misclassification of PDF malware classifiers. EvadeML
exhibited its effectiveness by producing evasive samples of all 500
PDF malware files selected from Contagio malware archive [6]. A
later work, EvadeHC [18], claimed to achieve the same performance
as EvadeML; that is, succeeding in generating evasive samples for
all 500 PDF malware files from Contagio. Moreover, they assumed
a more restricted, realistic attack scenario where the attacker will
only be given a binary prediction score from the PDF malware
classifiers.

Despite the impressive success in their automated evasive sam-
ple generation, our analysis has revealed that the existing evasion
techniques consume an excessively large amount of time to obtain
each sample. Although EvadeHC has made some effort to speed
up its generation time by applying a hill-climbing method to the
random mutation algorithm, their numbers still have much room
for improvement. According to our observation, the main factor
that increases the total time taken to generate an evasive sample
is the inherent difficulty of maintaining the original maliciousness
even after several trials of operations being carried out to manipu-
late structural features, which often result a crash. To explain this,
consider the PDF malware that is not originally evasive when being
given as input to the evasion techniques like EvadeML or EvadeHC.
In order to generate an evasive sample as output from the malicious
file, they must transform the original file structure by manipulating
(ie., inserting, deleting and replacing) its structural features. Con-
ceivably, it often occurs during the transformation that the original
file loses its maliciousness if a certain feature manipulation happens
to corrupt a file structure essential to maintain its maliciousness.
Let hereby S denote a set of all structural features of our target PDF
file, which can be manipulated to generate our evasive sample. We
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also define §’, a subset of S, whose elements are relevant (essential
for reconstructing PDF form) or crucial to maintaining the target’s
maliciousness, by which we mean that the maliciousness might be
corrupted by changing any of them.

As briefly mentioned earlier, the existing evasion algorithms
‘randomly’ select one feature after another from § and ‘mutate’ the
features until they obtain an evasive sample. Suppose that they
select and mutate features from S’ by chance. Then as been defined,
it is likely that the maliciousness of our target file is lost by error.
Upon recognizing the loss of maliciousness, the existing algorithms
undo the mutation on the feature to restore the lost maliciousness
and try to select another feature from S. We have observed in
the existing techniques that they suffer from quite frequent trials
and errors, each of which causes a waste of time, consequently all
in all inducing a significant increase in the total time for sample
generation.

A remedy for this problem would be to pinpoint the subset 5’
and transform the input PDF malware by manipulating features
only from the complementary set of 5’ (Le., § — §’) in search for
an evasive malware sample. Sadly, none of the existing techniques
listed above attempt to have knowledge of 5’ when they generate
evasive samples. Our observation on previous work motivated us
to develop a new solution where we drastically reduce the sample
generation time by avoiding wasteful cycles of trials and errors
during our PDF transformation. In our solution, we first strive to
identify a set §’ of structural features that are relevant to malicious
behaviors of most PDF malware available today. Next, during the
transformation phase, we continuously refer to the set in order to
ensure that our algorithm should select candidates for mutation
from the complementary set of 5”.

Clearly, in order for our solution to work successfully, we must be
able to determine the set §” for the PDF format files. To achieve this,
we employ the generative adversarial networks (GANs), which,if
appropriately trained, can learn to identify intrinsic properties (in-
cluding structural features) of benign and malicious PDFs. The
power of GANs that identifies the structural features belonging to
§’ comes from their innate characteristic, namely the adversarial
interaction between their two components, the generator and dis-
criminator, by which § is formed. To avoid the time-consuming
repetition of trials and errors, the generator constructs evasive sam-
ples by modifying features only in S — §’. Many existing GANs
usually employ a single discriminator, through which a modified
sample very similar to the original can be generated. To generate
a modified sample structurally very similar to the original, GANs
select features in § — §’, thereby conserving the original’s mali-
cious behavior as a result. However, the generated sample must not
only maintain the desired maliciousness but also evade the targeted
malware classifiers. To satisfy both the requirements, we have intro-
duced a GAN variant that employs a target PDF malware classifier
as the second discriminator to manipulate features only from §— 5’
during our evasive sample generation. To adjust the dependency
level of these two cooperative discriminators, we use an additional
parameter that controls the balance between them. Let alone its
speed in finding evasive malware samples, our solution has another
advantage that it can operate even under a realistic black-box attack
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Figure 1: PDF structure (a), Tree representation of PDF file (b)

scenario, in which the classification score revealed from the mal-
ware classifiers is in binary form (i.e., benign or malicious) rather
than a continuous classification score.

We have evaluated our solution against three PDF malware classi-
fiers. First of all, we have found that it can generate evasive samples
(without any crash) for all 500 unique PDF malware files selected
from the Contagio archive. Our proposed model successfully evades
the target PDF malware classifiers with the maximum number of
12 manipulating operations by 13 times faster than the previous
approaches. In contrast, EvadeML required the maximum of 354
and 85 feature manipulating operations to complete the generation
of evasive samples for PDFrate-v1 and Hidost '13 respectively. To
further demonstrate the effectiveness of our approach, we include
in our evasion seed all three types (e.g., JavaScript, ActionScript and
File Embedding) of PDF malware as known by CVE-2018-9958 [11],
CVE-2013-2729 [7] and CVE-2010-3654 [4]. The analysis reveals
that our evasive samples are all generated without any crash ex-
hibiting the same malicious behaviors as the original malware with
minimum modification. Last of all, unlike previous work, we eval-
uate the evasiveness of our generated malware samples against
AntiVirus engines from VirusTotal.

2 BACKGROUND

In this section, we describe the threat model and current state-of-
the-art PDF malware classifiers and evasion attacks.

2.1 Threat Model

Depending on the different levels of knowledge held by an attacker,
attack scenarios can be categorized into three different classes:
white-box, gray-box and black-box. The less information available
to an attacker, the darker the attack scenario is considered. The
types of information that can be provided to an attacker are three-
fold: (1) the training dataset and its labels, (2) the feature set and
the feature extraction algorithm of the classifier with its extracted
feature types and (3) the knowledge of the classification function
and its hyper-parameters.

In the black-box scenario, an attacker is provided with minimal
knowledge of the classifiers (e.g., the feature representation).

EvadeML constructs evasive samples against Hidost "13 and PDFrate-
v1 under a black-box attack scenario. They assumed that the clas-
sification score was revealed in a real number with many query
attempts. EvadeHC also operates under a similar scenario but the
main difference is that the classification score was given in the
binary form.

Our approach, PDF-GAN, operates in the same black-box sce-
nario as previous studies with an assumption that many submis-
sions of files are allowed. Also, the classifiers only reveal the classi-
fication score in a binary form (i.e., benign or malicious). However,
recently, many researchers managed to mitigate the evasion attack
by limiting the number of queries as the current black-box attack
requires many submissions. To this end, PDF-GAN was designed
to also operate as a transfer-based attack [40]. For this, we trained
a surrogate model that is a smaller network and evaluated the suc-
cess rate of evasion with much fewer query attempts to the target
classifiers. The details of the design and the experiments will be
explained in the following sections.

2.2 Portable Document Format (PDF)

2.2.1 PDF Structure. A PDF file can be broken down into four
parts: header, body, cross-reference table and trailer. Figure 1 (a)
shows the structure of a PDF. A header contains rather simple infor-
mation which includes the version number of the PDF specification
(i.e., "%PDF-1.3"). The body section contains objects and holds all
data of the document. There are eight different types of objects
supported by a PDF (i.e., Boolean, integer and real numbers, arrays,
strings, dictionaries, names, streams and null). A name object only
contains unique values, whereas a dictionary object consists of a
key and value pair.

Objects are identified by their given numbers, and they are ei-
ther indirect objects or the direct objects constituting dictionaries.
Indirect objects appear within the notation << >> and direct ones
are denoted as follows:

6 0 obj << [Type/Action/S/JavaScript/JS70R >> endobj
7 00bj << [Length 231/Filter FlateDecode >>

stream - - - endstream endobj
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For example, the object 6 with a keyword introduced by */* will
make an indirect jump to the object 7, which contains a sequence
of direct objects with keywords and their values. The length of the
stream is 231, which requires a FlateDecode filter. A cross-reference
table stores the mapping information of random and direct access,
allowing a specific object to be found without having to search
throughout the entire file. Note that PDF readers start rendering the
PDF from the bottom of the file, which is the trailer. The trailer spec-
ifies the offset value for the PDF reader to find the cross-reference
table and helps the reader find a specific object more quickly (i.e.,
trailer << /Size 9 /Root 1 0 R > > startxref 9178 %EOF). In this case,
the offset is 9178 bytes, ‘/Size’ indicates the number of entries in
the cross-reference table and ‘/Root’ is the catalog dictionary for

this file.

2.22 Types of PDF Malware. The three different types of PDF
malware are briefly explained. (1) JavaScript-based attacks exploit
a vulnerability using JavaScript code that can be embedded in one
or several objects. Typical examples of such vulnerabilities are an
API-based overflow and a Use-After-Free flaw. (2) ActionSeript-
based attacks capitalize on the fact that PDF files can visualize Flash
content. This is usually achieved by embedding ShockWave Flash
along with the ActionScript code such as memory corruption or
corrupted file code. (3) File-embedding attacks take advantage of
the fact that Adobe Reader can parse and read PDF files that are
embedded with contents of different file types, such as images (e.g.,
bmp or tiff) and fonts (e.g., ttf). When reading a PDF file, embedded
contents can lead to memory spraying to execute payloads with
malicious activities.

2.3 PDF Malware Classifiers

2.3.1 Hidost. Hidost is implemented using two different types
of classification models: support vector machine (SVM) [49] and
random forest (RF) [50]. SVM is a supervised learning model that
outputs an optimal hyperplane for separating two different labels.
RF is a meta estimator, comprising several decision trees that are
merged for more accurate classification. As the first step, Hidost
utilizes Poppler [10] a PDF parser to dissect files into a structural
multi-map in its structure extraction stage. These structural paths
of objects in a PDF are used as features during classification. Since
there are many semantically equivalent yet syntactically different
structures, a structural path consolidation (SPC), which is based on
rules that are manually created, is carried out. For feature selection,
Hidost naively includes only paths that are occurring in more than
a certain number of files to form a feature set. Hidost is provided
as open-source, and the model was trained using 10,000 random
files with a malicious-to-benign ratio of 1:1. The entire PDF dataset
was composed of 407,037 benign and 32,567 malicious files. The
results indicated that the Hidost model was the top detection tool
compared to AntiVirus engines (VirusTotal).

2.3.2 PDFrate-v2. The PDFrate classifier is implemented using
an RF algorithm that applies an ensemble learning model designed
to improve the prediction accuracy [48]. It employs metadata and
the content of the PDF files as classification features, which include
the names of the authors of the files, the size of the file, the position
and the number of specific keywords. The feature set is defined
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Figure 2: Flowchart of PDF-GAN framework

manually by the authors and the total number of features is 202.
However, only 135 are publicly available in the Mimicus implemen-
tation of PDFrate, which claims to achieve a close approximation.
The main difference between PDFrate-v1 and PDFrate-v2 lies in
the ML model applied. PDFrate-v2 adopts an ensemble method by
applying mutual agreement among the classifiers. It introduces the
idea of ‘uncertain’ in the classifier votes, where rates of 25% to 50%
are considered to be benign uncertainty, whereas rates of 50% to 75%
imply malicious uncertainty. The effectiveness was tested against
some known evasive attacks such as mimicry [31] and reverse
mimicry [37], and impressive performance was demonstrated.

2.4 Evasion Attacks

24.1 Automatically Evading Classifiers. EvadeML presents a
generic approach for evading the Hidost ’13 and PDFrate-v1 classi-
fiers through stochastic manipulations. It repeatedly mutates the
original malicious PDFs to create evasive variants. It is an auto-
mated procedure in which evasive samples manufactured by ran-
dom mutations are tested by the oracle to check the presence of
maliciousness. If no maliciousness is present, the variant will be re-
turned to the mutation stage. As for the reliable malware signature,
only the network behavior of the malware samples is considered.
A total of 500 sample seeds were selected from the Contagio PDF
malware dataset and the proposed method successfully reached
100% evasion, which took approximately six days.

However, PDF-GAN is based on learning the difference in the
feature sets between benign and malicious samples and modifying
a malicious PDF with minimum effect on its original purpose, and
hence achieving a 100% evasion success rate in noticeably less time
and with fewer modifications.

24.2  Evading Classifiers by Morphing in the Dark. In this study,
the authors focused on more restricted and realistic attack scenar-
ios where the target classifiers will only reveal the final prediction
regarding whether they are benign or malicious. Hence, a scoring
mechanism, EvadeHC, was proposed to overcome the limited in-
formation. The intuition behind this is to measure the number of
steps to overturn the result of the detector and derive the real-value
score from it. The authors introduced the notion of malice-flipping
distance, which is the number of mutations required for a malicious
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IRoot/Pages/Kids/MediaBox: [0, 0, 612, 7982] {Root/Pages/Kids/MediaBox 306.0

Figure 3: Feature abstraction [Dictionary (Key:Value)]

PDF to lose its maliciousness as determined by a tester. The reject-
flipping distance is a comparable concept, which is the number of
morphing steps required for a malicious sample to be classified as
benign. A simple morphing technique is employed that performs
the basic operations: insert, delete or replace. Their design consists
of three components: a binary output detector, a tester to check the
maliciousness of evasive samples, and a morpher that randomly
mutates the PDF files. The target classifiers were Hidost '13 and
PDFrate-v1 and its effects were evaluated with the 500 selected
malware samples from Contagio archive.

Qur approach operates under the strong assumption that the
classifiers and testers only reveal their binary output results. Unlike
this work, our PDF-GAN did not need a scoring function to convert
the results into a real-value score and successfully evaded even
more recent classifiers with the same seed samples.

3 DESIGN

In this section, the design of our approach will be explained in
detail. First, how features are extracted from PDF files and selected
to be used as a feature set for training PDF-GAN. The explanation
of how we selected a seed file for our mutation and evading model
architecture will be followed by PDF repacking process. Figure 2
shows an overview of our proposed method, which consists of
three phases: 1) pre-processing of FDF, 2) PDF-GAN training and
3) detection. The details are presented in the following sections.

3.1 Feature Extraction

PDFs are parsed into the tree representation as shown in Figure 1
(b). We have utilized the PDFrw (ie., PDF parser) provided by
EvadeML [8] with few modification to correctly parse all objects.
It is important that the parser do not omit any major objects (e.g.,
/Javascript and /OpenAction) as PDF-GAN would be unable to fully
interpret the structural difference between benign and malicious
PDFs, which in turn will lead to poor results in PDF-GAN’s per-
formance. Thus to avoid leaving out any potentially pivotal in-
formation, PDFrw has been modified to include all key values of
/Root while parsing PDFs into a tree representation (i.e., /Metadata,
/OpenAction, /Javascript, /AcroForm, /PageLayout, etc). Additionally,
for higher speed computation, we ignore any paths containing an
object with /Parent or /Prev as they are recursive.

From the tree representation, a feature set can be formed. Each
path from the root to a leaf node and its value is considered as a fea-
ture as listed in Figure 3 (left). The feature abstraction is performed
by converting features into a form of dictionaries (i.e., keys and
values). Finally, similar to the previous work [49, 50], any values in
a string type were converted to an integer value of 1 and a value

Features Key Value | |
IRoot/Type: /Catalog [RootiType 1.0
IRoot/OpenAction/JSiLength: 281 * [Root/OpenAction/JSiLength | 281.0 | @ | @ | @ l @
IRoot/Pages/Kids/Type: [[Page, /Page] {Root/Pages/Kids/Type 1.0
L
f

4,362 }— 1,249 —F 340 {}— 1.428 —

eatures only in benign files

3 eatures more in malicious files
eatures more in benign files @

=Fi =F
=F = Features only in malicious files

@
@

Figure 4: Feature selection by pooling

Description |  No.of seed
Contagio dataset (excl. training set) 6,105
Cuckoo result with network activities 1,503
PDFrw parsing 1,502
Feature extraction 1,485
Unique files 712
True positive of SVM & RF & Ensemble 709
Randomly selected samples 500

Table 1: Mutation seed selection process

given in the form of an array of values was transformed into the
median of values in an array as shown in Figure 3 (right).

3.2 Feature Selection Process

The feature selection process plays a crucial role in determining
the effectiveness of the ML. Since it is impractical to use all features
extracted from the entire dataset, we must select a decent number
of features that represent all features in a sufficient manner, to be
included in the feature set. In previous studies, Hidost simply nar-
rowed down the size of the feature set by only including features
that occur in more than a certain number of files. Such a number
is typically set to 1% of the training set size and the selection is
performed “in hindsight” once for the entire dataset. However, this
method failed to evenly include features from both benign and
malicious files as malicious files tend to contain unique features.
Hence, a huge portion of the feature set was occupied by features
extracted from benign PDFs. Therefore, with the intention of includ-
ing features extracted from malicious files, a novel feature selection
process was applied. In short, the entire feature set was created
by deliberately maneuvering the ratio between different pools of
features to be used for training the target classifiers and PDF-GAN.

We segregated the entire features into four pools: (1) features
found only in benign PDFs (2) features found more in benign PDFs
than malicious ones. (3) features found more in malicious PDFs than
benign ones. (4) features found only in malicious PDFs. Figure 4
shows the number of features from each pool. Any features that
were found in less than that of either benign or malicious files were
excluded. The main reason for applying the new feature selection
process was to overcome the imbalance of dataset problem com-
monly found in DL that the existing mechanism failed to overcome
as explained above. We gathered a set of 297 features with a bal-
anced number of features from each pool. This method resulted
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Figure 5: Model architecture.

in an improved detection performance as it will be illustrated in
Section 4.2.

3.3 Seed Selection for Mutation

We have selected a total of 500 files after filtering out from Con-
tagio malicious files. Table 1 shows how those files were chosen.
Selecting seed PDF files to be fed into PDF-GAN was done with
the dynamic analysis system (i.e., Cuckoo: the leading open-source
automated malware analysis system ). First, a primitive set of seeds
was selected from the Conatgio data set, excluding files from the
training set. After analyzing 6,105 files, it appeared that only 1,503
files indicated some malicious network activities. This result may
have been caused by the inborn limitation of dynamic analysis. All
of these files were parsed through PDFrw and the feature extrac-
tion process to validate their tree structure. A total of 1,485 files
remained after this process. Upon close examination, we realized
that many of the files shared the exact same value for the set of
297 features. Therefore, after filtering out homogeneous files, 712
remained. Finally, it was important that these files be classified as
malicious by our target classifiers. The remaining files were put
through all three classifiers sequentially and 99.6% of them were
corrected classified as malicious, which demonstrates the high per-
formance of our classifiers. Among 709 files, we randomly selected
500 for the evasion process to evaluate against previous studies.

3.4 Evading Model Architecture

Our training involved three parts: a generator, a discriminator and
a surrogate classifier. The generator constructs a PDF close to the
form of the input data and the surrogate classifier produces a pre-
diction score of the malicious and benign PDF. The discriminator
then predicts a confidence score on whether the data are from §*
or not. The generator is trained with the original PDF to learn and
create a variant version of the original PDF such that the prediction
result of the generated data is a reverse of the original PDF.

The architecture of this model is illustrated in Figure 5. The
generator takes an input x and gives an output %, both of which
are given to the discriminator and the surrogate classifier. The
discriminator outputs the probability that x = £ and the surrogate
classifier outputs a prediction score given input £. The learning
objective of the generator is to minimize the prediction score of the
surrogate classifier and the learning objective of the discriminator
is to discriminate whether a generated PDF is the original x.
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The generator accepts length n of a pre-processed PDF as input
fed into the generator and constructs a variation of the PDF. The
first layer consists of 64 filters with a length of 4; the second layer
consists of 32 filters with a length of 2; the third layer consists of 16
filters with a length of 2. The fourth layer consists of 8 filters with
a length of 2. Additional layers are then added in reverse order as
the number of input length n. Batch normalization [25] is used at
each layer and tanh [33] is used as the activation function at each
layer, except for the final layer where ReLU [38] is used for the
activation function. A sigmoid activation function is used to output
the probabilities from the logits. The discriminator takes the output
of the generator as input to determine whether the output is from
§’. The first layer comprises n input feature size of filters; second
n*2; third n #4; fourth n+ 8; fifth n input feature size of filters. Tanh
is used at each layer as the activation, except for the final layer,
where a sigmoid activation function is used to output probabilities
from the logits. For the surrogate classifier, we constructed one
layer network. The kernel size of each layer is 3 with stride 1 for
all networks.

To define the learning objective, let Ls,Lp and Les denote the
loss of the generator, discriminator and surrogate classifier, respec-
tively. The generator, G, aims to generate malicious PDF by learning
data distribution close to the distribution of benign PDF. For each
malicious input x € X, G seeks a possible stochastic mapping to
other representation, X = G(x;60g) € X by conditional probability
density function p(%|x), where 65 denote the parameter for the
generator. In original GANs, generator receives noise z ~ p.(z[Y),
where Y is the class labels space. However, in our model, G receives
noise z, which is computed by x Xr € RY where r, d are the random
string and the feature dimension, respectively.

First discriminator, D, aims to distinguish malicious features by
learning distribution of ', and the generator’s input is required
to retain the original form of maliciousness by computing recon-
struction loss between generator’s input and the output. Second
discriminator (surrogate classifier), C*, aims to evade the classifier
by predicting prediction score given generator’s output. Computed
loss from both two discriminators are then back-propagated to the
next step training step of the generator. For the white-box attack
C* can be replaced by the actual target classifier.

The generator then has the following objective functions:

L = d(x, G(x,06)) + (1= Ag) -Lp + Az - Les)

= d(e9)+ (1= Aa) 'Lp +44 L), w
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where d(x, %) is the Euclidean distance between the generated and

original data. In addition, A7 is the weight parameter for the surro-

gate classifier that can be used to control the dependency level of

the generation to maximize the diversity of the feature changes.
A discriminator has the sigmoid cross entropy loss of:

Lp=-y-log(D(x)) - (1 - y) - log(1 - D(G(x,85))).  (2)
A surrogate classifier has an objective function of:

Les = =IC°(f(x)) = C° (f(£) ks 3)
In the case where input x is classified as malicious by the surrogate
classifier, £ needs to be classified as benign. For this, we need to
maximize the distance of the prediction score. Given the above
equations, the generator optimizes a convex of Eq.1 finding Nash
equilibrium of a min-max game between the G against both D and

C*.

3.5 PDF Repacking and Verification

Once PDF-GAN successfully evaded the classifiers with the mu-
tated feature set, we must verify that the originally intended mali-
ciousness was retained. For this verification, the mutated features
must be applied to the original malicious PDF by the repacker. The
repacker has three operations: insert, replace and delete. insert oper-
ation updates the dictionary according to the mutated feature set.
A new key and value is inserted into PDF and the new value was
in the form of real numeric value. For example, /Root/Pages/Rotate:
None —> 0 means that the new path of /Root/Pages/Rotate with a
value of 0 is inserted into the tree representation. replace and delete
operations are essentially operate in a similar manner. The former
replaces the existing value with the new value and the latter deletes
the key and the value pair (i.e., feature) from the dictionary hence
deleting a path from the tree representation. All three operations
are carried out while retaining the tree representation structure of
PDF.

The most time-consuming aspect of finding evasive samples is
repacking the mutated features back into proper FDF files. In addi-
tion to GANSs reconstruction power, addition trick was considered
to reduce the number of tries in repacking to reconstruct the PDF
files. As explained in Section 3.1, if the dictionary was in an array
from, the median value of elements was used instead. Therefore, in
the repacking process, the modified feature value, which is a form
of real numeric value, was reshaped into an original form (e.g., an
array form). Consequently, it contributed in improving the evasion
speed compared to the state-of-the-art evasion techniques, which
is described in Section 5.4.

The reconstructed PDF file (i.e., repacked evasive sample) is
tested in Cuckoo sandbox to verify that the maliciousness is main-
tained. The detail of this verification stage is explained in Sec-
tion 4.4.

4 EXPERIMENT

For the experimental evaluation, a Cuckoo Sandbox 2.0.7 was ar-
ranged using 16 virtual machines (VMs) running Windows XP 32bit
SP3 and Windows 10. Adobe Reader 8.1.1, FDF-XChange 2.5 and
Foxit Reader 9.0.1 were installed in VMs. For the training, we used
a Linux machine [Ubuntu 12.04, 2.6 GHz Intel Xeon E5-2690 (14
Cores) and 8§ NVIDIA GTX TITAN V 12GB] without parallelization.

. Feature

Classifier selection Accuracy (%) AUC Fi
SVM Old 96.46 0989 0825
(Hidost "13) New 96.89 0.994 0.995
Random Forest Old 96.45 0.988  0.801
(Hidost "16) New 98.07 0.994 0.998
Ensemble Old 99.37 0.993  0.667
(PDFrate-v2) New 99.69 0.995 0.995

Table 2: Detection accuracy of classifiers with new feature
selection compared to old feature selection

4.1 Datasets and Model Training

We managed to gather PDF malware samples from VirusTotal.
The dataset was collected on December 20, 2017 and on March
14 and June 19, July 17, 2018 and it consisted of 10,673 files in total.
The Contagio dataset comprises a total of 9,109 benign files and
11,105 malicious files. In addition, CVE samples were collected from
Exploit-db [13] where proof-of-concept (PoC) codes and files are
uploaded. Six specific samples were used in the experiment.

For training PDF-GAN, we used an optimizer of the multi-class
logarithmic loss function Adam [28] with a learning rate of 0.001,
a beta rate of 0.5 and a mini-batch size of 16. The discriminator
achieved optimal loss after 1,000 steps, whereas the generator re-
quired 1500 steps to generate original data similar to the sample.
Most of these parameters and network structures were experimen-
tally determined to achieve optimal performance. Randomly se-
lected 5,000 benign and 5,000 malicious files from Contagio dataset
were used for training classifiers and PDf-GAN.

4.2 Target Classifiers

Our target classifiers were Hidost "13 with a SVM model, Hidost
"16 with a RF model both of which used Poppler as a parser and
PDFrate-v2 with an ensemble method that used a customized parser.
The feature extraction and selection process were reproduced ac-
cording to an open-source code and each machine learning model
was applied using scikit-learn. Well-known detection performance
parameters such as accuracy, Fl-score, and the area under the curve
(AUC) were measured.

For Hidost, the test set comprised the Contagio dataset exclud-
ing the samples used for the training (ie., 6,105 files) and PDF
malware samples from VirustTotal (i.e., 10,673 files) that were not
included in the training set also. For PDFrate-v2, we applied the
same methodology as explained by the authors and the classifier
was applied to the training set using 10-fold cross-validation. The
results are presented in Table 2 under Old. However, with the help
of our unique feature selection process we were able to achieve
an even better detection performance as shown under the heading
New in Table 2. The performance was measured with all varying
factors including the training and test datasets fixed except for the
feature selection process and the performance showed noticeable
improvement across all fields. Hence, we can claim that, because
our own classifiers performed better in terms of accuracy, AUC
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Exploited
CVE-ID Type of PDF malware Type of vulnerability Application Version . plotte .
(Arbitrary code execution)
CVE-2008-2992 [1] JavaScript Buffer overflow Adobe Acrobat & Reader 8.1.2 calc.exe & notepad.exe & message-box
CVE-2010-0188 [2] File Embedding (.tiff) Integer overflow Adobe Acrobat & Reader 9.1 calc.exe
CVE-2010-2883 [3] ActionScript Bufter overflow (CoolType.dll) Adobe Acrobat & Reader ~ 9.3.4 calc.exe & notepad.exe
CVE-2010-3654 [4] ActionSeript Flash (Memory corruption) ~ Adobe Acrobat & Reader 9.4 calc.exe
CVE-2011-2462 [5] JavaScript Flash (Buffer overflow) Adobe Acrobat & Reader 9.4 calc.exe & message-box
CVE-2013-2729 [7] File Embedding (.bmp) Integer overflow Adobe Acrobat & Reader ~ 10.1.4 message-box
CVE-2017-13056 [9] JavaScript Improper validation of string PDF-XChange 2.5 calc.exe
CVE-2018-9958 [11] JavaScript Use-After-Free Foxit Reader 901 calc.exe
Table 3: Details of CVEs used in the experiment
Analysis Type | Description | Example
Performs some HTTP requests [GET http://www .deaf-video.de/3c55ea9320fcadfabb79d08f91 bef510/.a1/load phpTe=2]
DNS queries [www.deaf-video.de]
Network Transport IP addresses [UDP: 192.168.56.128:137 -> 192.168.56.1:137)
(UDF, TCF) [TCP:192.168.56.128:1292 —> 185.53.178.6:80]
Network communications indicative of a potential or script payload download | [url: http:/ fwww.deaf-video.de/3c55ea9320fcadfabb79d08f91bef310/.a1/load phpTe=2]
(APT: URLDownloadToFileW) [filepath_r: C:A\DOCUME 1'cuckoo\LOCALS 1\Temple.exe]
Behavior One or more non-whitelisted processes were created [CADOCUME 1\cuckoo\LOCALS 1\Temp'e.exe]
Static The PDF open action contains JavaScript code [<< /S (JavaScript /]S this.BXcfTYewQ() >>]

Table 4: Maliciou

and F1-score, it is reasonable to target the new classifiers instead
of Hidost "13, Hidost "16 and PDFrate-v2.

4.3 CVEs for Various Types of PDF Malware

Common vulnerabilities and exposures (CVEs) provide publicly
known security vulnerabilities in a reference-style. To widen the
scope of capability in terms of evasion effectiveness, the CVEs
described in Table 3 were included in the experiment in generating
evasive samples. The set comprises three types of PDF malware,
namely, JavaScript, ActionScript and File embedding. The types of
vulnerability also varied widely from a buffer overflow to memory
corruption and Use-After-Free. In addition, several different target
applications were tested including Adobe Acrobat Reader and Foxit
Reader. Adobe versions required for the successful attack range
from 8.1.2 to 10.1.4. We implemented the attack using a few different
codes to be executed when the PDF is parsed and viewed with the
reader. It is important to note that these samples were not included
in the training phase of the framework but only after PDF-GAN
was fully trained these samples were fed into a trained PDF-GAN
model for the purposes of generating evasive samples.

4.4 Malicious Signature

Maintaining the maliciousness of PDF files was an absolute neces-
sity in confirming the evasive sample and completing the evasion
of the classifiers. Had they lost maliciousness at any stage of the
evasion process, the purpose of this study would have been negated.
To check if mutated malicious PDF files still acted with malevolence,
we leveraged Cuckoo sandbox. Cuckoo can analyze many different
malicious files and trace API calls and the general behavior of files
transformed into comprehensible signatures. Owning to the innate

38 @

s signatures

limitations of a dynamic analysis, the behavioral signatures varied
even for the same file. Therefore, reliable malicious signatures were
needed to confirm that the modified PDFs still maintained their ma-
liciousness. There were three main types of analysis we paid special
attention to network, behavior and static. Table 4 shows the types
of signatures and their examples. We compared the analysis results
between the original and modified versions. However, focusing
only on the network behavior of the files would limit our work to
malware related to network activities. Hence, unlike previous work,
CVEs of all three types of PDF malware described in Section 2.2.2
were included in the experiment. After the modifications were made
using trained PDF-GAN, the modified file was put through a tester
stage. If it performed as originally designed as listed in Table 3, it
was considered to be an evasive sample.

4.5 AntiVirus Engines (VirusTotal)

VirusTotal investigates submitted URLs or files with AntiVirus en-
gines and reveals the detection result from each engine. Although
PDF-GAN already proved its imposing capability in generating ad-
versarial examples by evading open-source PDF malware classifiers,
we further demonstrate its effectiveness by evading commercial
AntiVirus engines. Tested AntiVirus engine version was the most
recent update (i.e., 2020. April). The procedure for this attack con-
sists of two stages: (1) Use generated AEs from Contagio dataset to
check if any of them can evade AntiVirus engines (i.e., a transfer-
based attack). (2) Generate variants of successful AEs to further
improve the evasion rate for more AntiVirus engines. The result of
stage 1 is illustrated in Section 5.5 and it shows that many AEs ap-
peared to be also effective on numerous AntiVirus engines through
a transfer-based attack (i.e., PDF-GAN is not trained to evade any of
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Contagio dataset CVE-IDs
Features SVM - Randuml-‘mesltv - Ensemble ot SVM =T Random}'mastN N Ensemble ot
Operation ﬁl;:; Operation ﬁtl':; Operation ﬁ;‘;.s Operation ﬁ‘]j:; ‘Operation ﬁ‘jj:; Operation ﬁ;:;

/Root/Type [‘msert, ‘Change’) 500 | [Insert, 'Change] 500 | [msert,’Change’] 500 |  [Change'] 14 [Change'] 14 | [Change] 14
[Root{Pages/Type ["Change’) 500 ["Change") 500 ["Change'] 500 ['Change'] 14 ['Change'] 14 ['Change'] 14
[Root/Pages/Rotate ['Insert’] 500 [Insert’) 500 ['nsert’] 500 ['nsert’] 14 ['Insert’) 14 ['sert’] 14
/Root/Pages/Kids/Type ['Insert’, 'Change’] 500 | [lsert’ 'Change’] 500 |['Insert)’Change’] 500 ['Change'] 14 ['Change'] 14 ['Change'] 14
/Root/Pages/Kids/Resources/ProcSet ['Insert’, 'Change’] 396  ['Insert’,'Change’] 418 |['nsert,’Change’] 442 | ['Insert,’Change’) 10 | [Insert’,’Change’] 13 | ['Insert,’Change’] 11
/Root/Pages/Kids/MediaBox ['Insert’, 'Change’] 269 ["Change") 268 ["Change'] 268 ['Change'] 2 ['Change'] 5 ['Change'] 3
/Root/Pages/Kids/TrimBox ["Change'] 234 ["Change"] 234 ["Change'] 234 - - - - - -
[Root/Pages/Kids/Contents/Filter ['Imsert’,'Change’] 220 | ['sert’,'Change’] 204 |[Insert,’Change’] 289 | ['Insert,’Change’] 5 | [Insert’,’Change’] 12 | ['Insert,’Change’] &
/Root/Pages/MediaBox ["Change'] 73 ['Change’] 73 ['Change'] 73 ['Change'] 2 ['Change'] 2 ['Change'] 2
/Root/Pages/Kids/CropBox ["Change’] 13 ['Change’] 18 ['Change’] 18 - - - - - -
/Root/Pages/Kids/BleedBox ['Change’) 18 ["Change") 18 [*Change') 18

/Root/Pages/Kids/ArtBox ["Change’] 13 ["Change’] 13 ['Change"] 18

/Root/Names/JavaScript/Names/]S/Length ["Change'] 17 ['Change’] 17 ['Change"] 17

/Root{AcroFormyFields/Kids/Kids/Rect [*Change’] 8 ['Change’] 8 ['Change’] 3

/Root/Pages/Kids/Contents/Length ["Change’) 7 ["Change’) 7 ["Change') 7 - - - - - -
/Root/Pages/Kids/Anmots/Rect ["Change’] 4 ['Change] 4 ['Change'] 4 ["Change'] 2 ['Change'] 2 ['Change'] 2
/Root/OpenAction/Annots/Rect ["Change'] 3 ['Change’] 3 ['Change"] 3 - - - - - -
/Root/Pages/Kids/Annots/Subj/Length ["Change’) 1 ["Change’) 1 [*Change') 1

Table 5: Feature mutation result for Contagio dataset and CVEs

can evade some engines and by only changing the contents, more
AEs can be generated. The AntiVirus analysis result for 45 engines
is shown in Section 5.5

1= uSVM

143 138

Random Forest

130
120
12 Ensemble
SBg5
12 2
‘ 5B 57, 81 010
: : Ma=s au. wBB,

4 5 6 7 8 9 10 11 12
Number of features mutated (out of 297)

5 RESULTS

7 . . . .
7068 In this section, the experimental result for evading PDF malware
classifiers and maintaining maliciousness using both Contagio
dataset and CVEs is described. Also, there was an drastic improve-

2532
n

ment in the time required to evade PDF malware classifiers for 500

Number of Files (Total: 500)

samples. Finally, the result of an experiment to evade AntiVirus
engines (Virustotal) is explained.

5.1 Feature Mutation Result for Contagio

The feature mutation results are shown in Table 5. All of 18 features

uSVM

that were manipulated in at least one file were from the set S— 5’ as

5 5 Random Forest

the desired maliciousness was maintained. There were four features

Engamble listed at the top that needed to be altered in all of 500 files to evade

the classifiers. In addition, none of the features were removed from
the original files. We believe that this fact may have been crucial

H : in retaining the maliciousness and passing the Cuckoo test phase
101 on the first attempt. If any of the features from a set of features
I relevant to the malicious behavior (i.e., §') were modified, many

malware files would have lost their original maliciousness.

Number of Files (Total: 14)

As mentioned in Section 3.1, a value assigned as an integer value
of 1 indicates that it was initially in a string type. Hence, if such a
value is changed to any other value, the original meaning will be

Number of features mutated (out of 297)

diminished. There were five cases in which the value was changed

Figure 6: The number of features mutated to generate AEs
from 1to 2:

for all 500 files selected from Contagio (top) and 14 CVE files
(bottom)
{/Root/Type, /Root/Pages/Type, /Root/Pages/Kids/Type,

. . . . /Root/Pages/Kids/Contents/Filter, /Root/Pages/Kids/Resources/ProcSet}
AntiVirus engines). The variants of AEs were created by swapping

malicious contents from other malware samples among detected

as malicious by engines. This approach is rooted from the under-

standing that PDF-GAN successfully discovered PDF structure that

Another interesting observation is that to evade all classifiers,
insert operation on /Root/Pages/Rotate was required.
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Figure 7: Cuckoo signature result (left), Arbitrary code exe-
cution result of CVE-2011-2462 (right)

Our approach, PDF-GAN, unlike EvadeML and EvadeHC, grasps
the differences in the patterns of the features between benign and
malicious files and opts only to modify the minimum number of
features from the files. The number of mutations required for the
files differed between learning algorithms, as shown in Figure 6
(top). Fewer than eight features were needed to be modified in more
than 95% of the files.

To confirm that PDF-GAN truly deduced the distinction in the
patterns of the features to incur the minimum number of feature
manipulations, we partially modified the file according to PDF-GAN.
For example, for a file that required five features to be modified,
31 partially modified variants were created. (i.e., 5 combination(C)
1+ 5C2 + 5C3 + 5C4+ 5C5 = 31). The result clearly showed that
PDF-GAN provided the least number of modifications to complete
finding evasive examples. For the case of PDFrate-v2 (Ensemble),
generating evasive examples for all 500 original PDF malware at
the point in which all features suggested by PDF-GAN were altered.
Therefore, we can conclude that the our approach suggested all the
features that were needed to be perturbed in order to evade the
classifiers.

5.2 Feature Mutation Result for CVEs

Not surprisingly, the result of feature mutation for the CVE sam-
ples showed a significant similarity compared to that of the Conta-
gio samples. Table 5 illustrates that all the modified features were
among those in the results of the Contagio samples. The top four
features that affected the entire Contagio samples were also affected
by all 14 CVE samples. Also, no feature was deleted from the origi-
nal malware. On top of this, the number of mutations requires to
find evasive samples shows the same trend as illustrated in Figure 6
(bottom). This result confirms that PDF-GAN was trained to alter
only those features that deceive the classifiers while preserving the
intended maliciousness.

5.3 Malicious Signature Verification

The result of preserving a malicious signature was confirmed by
Cuckoo and by manually running the CVE samples. An example of
the results is shown in Figure 7. By analyzing the Cuckoo results,
we confirmed that all signatures listed in Table 4 remained intact for
all 500 seed samples, which verified the successful attempt of gener-
ating evasive samples. Moreover, all of the CVEs that contained all
three types of PDF malware also operated according to the initial
intention of the malware. The right side of Figure 7 shows that
a calculator opened when the malicious PDF was read by Adobe
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Figure 8: Time required to evade PDF malware classifiers for
500 selected malware files from Contagio

Reader. The attacker can customize the exploit to have any code
executed at will.

5.4 Evasion Speed

As our approach tackles the problem by training PDF-GAN with
the feature set, it was expected that the cost of execution in terms
of evasion speed would be better than that of the previous work
by EvadeML. Figure 8 illustrates the total time taken to identify
an evasive variant for all 500 selected malware seeds. EvadeML
employs a stochastic search based on a fitness function meaning
that many possible variants are created to be tested on the oracle for
their malicious signature. As the unit-cost of the Cuckoo sandbox
testing was much higher than any other stages of the evasion, a
huge portion of time spent by EvadeML was designated for oracle
testing. However, our approach managed to avoid such overhead
by utilizing PDF-GAN only to modify the non-relevant features
of PDFs in maintaining malicious behavior. Thus, we needed to
perform only the verification stage once to confirm that all variants
maintained their malicious signature.

All stages of our evasion process are shown in Figure 8, including
parsing of files, feature extraction, feature selection, training PDF-
GAN, inference and finally testing the possible evasive sample with
the Cuckoo sandbox. As expected, the stages that occupied the
largest portion were the training and inference stages with PDF-
GAN. A total of 102 minutes was spent on the classifier with the
SVM model (e.g., Hidost ’13), 127 minutes on the classifier with
the RF model (e.g., Hidost ’16) and 180 minutes on the classifier
with the ensemble model (e.g., PDFrate-v2). They correspond to
55%, 61% and 69% respectively of the total time taken, respectively.
The more robust the detector, the longer it took for PDF-GAN to
be trained and to infer the modified version of PDFs.

In comparison to the total time taken for EvadeML to evade
Hidost ’13, our approach achieved the 100% evasion rate within
about 3 hours, which is more than 13 times faster in evading a SVM
model. Moreover, even when PDF-GAN aimed to evade a more
advanced classifier with the ensemble model, it achieved the full
evasion 30 times faster than EvadML targeting PDFrate-v1, which is
merely a RF model. In addition, we compared the time required for
full evasion against the EvadeHC algorithm. The total evasion time
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Figure 9: Evasion rate of AntiVirus engines by generating variants of AEs in Table 6

against Hidost '13 was measured according to the author explaining
that the average time taken to generate a single evasive sample
was 5 minutes. In relation to PDFrate-v1, the relative time taken
was measured for evading all 500 seed samples. Surprisingly, a
contrast to EvadeML, the time taken to generate all evasive samples
for Hidost was greater than that of PDFrate-v1 with the EvadeHC
algorithm. In comparison to our PDF-GAN model, it managed to
achieve the full evasion more than 13 times faster for a SVM model.
It is important to note that while in our experiment setup, only 16
virtual machines were implemented, EvadeHC utilized 216 virtual
machines. This implies that PDF-GAN could achieve the full evasion
in a much shorter time if the same number of virtual machines were
used for the testing phase.

5.5 AntiVirus Engines (VirusTotal) Result

All 500 malware samples selected for previous experiments and AEs
that PDF-GAN generated to evade three classifiers were uploaded
to VirusTotal for analysis from AntiVirus engines. The result is
summarized in Table 6 and it shows the number of malware files
detected and AEs for each engine. It is important to notice that AEs
discovered for each engine is from the AEs that PDF-GAN generated
while evading Hidost '13, Hidost '16 and PDFrate-v2. We observed
that generated AEs were still effective for the AntiVirus engines
(i.e., a transfer-based attack) and a total of 19 engines appeared to
be vulnerable to this transfer-based attack.

Furthermore, we created the variants of those AEs by swapping
malicious contents from malware files and Figure 9 illustrates the
successful evasion rate in 45 AntiVirus engines. Few engines were
excluded as they did not support analysis for PDF format malware.
As all 500 selected malware samples contain unique maliciousness,
we defined that finding 500 AEs which collectively contains those
maliciousness represents 100% evasion rate. 100% evasion rate was
achieved in 7 AntiVirus engines and 60% for 45 engines in aver-
age. These results showed that if the experiment did not rely on a
transfer-based attack (i.e., if PDF-GAN is trained to evade AntiVirus
engines), even higher evasion rates can be achieved.

AntiVirus engines No. of original No. of
(VirusTotal) files detected AEs
AegisLab 472 54
Arcabit 445 135
Avira 500 48
BitDefender 495 3
Comodo 472 49
DrWeb 279 1
ESET-NOD32 471 109
Emsisoft 492 1
F-Prot 483 4
F-Secure 495 78
GData 498 3
K7GW 138 5
McAfee-GW-Edition 498 1
MicroWorld-eScan 497 1
Microsoft 457 13
Sangfor 304 1
SentinelOne 500 2
TotalDefense 344 42
ViRobot 496 429

Table 6: Number of malware files detected (out of 500) by An-
tiVirus engines and adversarial examples (AEs) by a transfer-
based attack

6 DISCUSSION

While PDF-GAN is effective under the black-box assumption that
reflects its effectiveness, one can design a defensive mechanism
for a more robust detection system. Similar to any other evasive
techniques, multiple submissions to the detector is required to
acquire a classification score. Therefore, if the defender decided to
limit the number of submissions for a single peer, it would hinder the
performance of the evasive technique. Moreover, the defender can
opt to retrain the detector model with newly submitted files. Using
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Type of Adversarial attacks

Fast Gradient Method (FGM) Projected Gradient Descent (PGD) Basic Iterative Method (BIM) Carlini&Wagner (CW)

Is classifier evaded? Yes

Is malicious signature maintained? No

Is PDF repacking successful? No

Is AntiVirus engines (VirusTotal) evaded? No
Avg, No. of features mutated 126

Yes Yes No
No No No
No No Yes
No No No
120 121 29

Table 7: Different type of ML attacks

newly submitted files, the detector model can be retrained and can
employ recent ML approaches for continual learning [29, 35, 42, 46]
in which ML is used to continuously learn without loss of acquired
knowledge on previous tasks.

In a strong black-box scenario where the number of queries is
limited, it is imperative that PDF-GAN still shows a promising per-
formance with extremely small number of queries to the classifier.
With single layer surrogate model, we managed to achieve 9.6%
transfer rates. This is an improvement from other query limited
black-box attacks which showed 3.4% transfer rates [34]. If more
queries are allowed to the target classifier, PDF-GAN can immensely
improve the transfer rate.

In a white-box scenario, other types of adversarial examples may
become applicable for generating evasive samples. This is, such as
FGM or CW, for computing an AE in the features space and map it
back to obtain an evasive document. However, most of the existing
ML attacks were incapable of maintaining malicious signatures
while easily evading classifiers, as shown in Table 7. Patterns that
can easily be flipped by adversarial perturbations is known as non-
robust features [24]. The aforementioned AEs can easily compute
adversarial perturbations to evade classifiers by flipping non-robust
features. However, none of these approaches use reconstruction
loss to preserve to maintain original PDF behavior, which often
resulted in a crash. Consequently, GANSs reconstruction loss was
necessary to conserve the original’s PDF behavior.

The notion of robust and non-robust features are defined by [24].
Robust features correspond to patterns that are predictive of the
true label even when input is adversarially perturbed. Conversely,
non-robust features correspond to patterns that are also predictive
but can easily be flipped by adversarial perturbations. ML models
use both features to minimize the training loss; thus, flipping non-
robust features will have a huge impact on their prediction accuracy.

To mitigate AEs, Goodfellow et al., [20] introduced an algorithm,
called adversarial training, that is robust to AEs by retraining them.
In the same sense, antivirus vendors can prevent such adversarial
attacks by collecting mutated examples and updating their detectors.
However, once the detectors have been updated, attackers can also
retrain PDF-GAN that exploit target detectors. It was observed that
new AEs remained undetected by the updated detectors. In our
experiments, among 500 mutation seed files, some evasive PDFs
were successfully uploaded to Gmail server. We believe that it is
also possible to consider Gmail the target detector under the strong
black-box scenario.

In the process of denoting PDFs in a tree structure form and in
the process of extracting and selecting a feature set from the tree
structure, we observed that there is considerable loss of information

47 @

concerning the PDFs. For example, the most recent detectors select
few features from a large group of features to be used in the training
phase. We believe that the performance of feature extraction on
the PDFs is directly associated with the generation of performance.
Therefore, eliminating the handeraft of such a process can increase
the performance of the PDF detectors. A similar story is also true
for the evasion scenario. Once all information can be represented
and abstracted without the application of any handcraft for train-
ing GANSs, a considerable increase in the performance of evading
malware classifiers can be observed.

DL has been applied to several forms of high-dimensional data
to denote a low-dimensional Euclidean space and recently DL has
been expanded even to non-Euclidean spaces such as graphs [16].
Word2Vec is a representative algorithm that generates a low dimen-
sional embedded vector that corresponds to a high-dimensional
word based on the mutual occurrence frequencies of words. Simi-
larly, there are algorithms for embedding a graph [39] that maps
a graph region to a low-dimensional region while preserving the
adjacency and structure of the nodes. Graph2Vec is one of the
representative algorithms used for graph data-driven learning ap-
proaches. Embedding algorithms such as Word2Vec and Graph2Vec
may be suitable candidates for denoting all features of the PDF
without any handcraft.

7 CONCLUSION

We introduced a novel approach for generating evasive PDF samples.
In addition, we introduced a new technique for selecting a feature
set that even includes unique features lurked in malicious files
through pooling. As a consequence, we achieved a better detection
performance than the state-of-the-art open source PDF malware
classifiers. Finally, our approach was based on the black-box threat
model in which the attacker is extremely restricted with informa-
tion concerning the target classifier. We evaluated our approach
using over 10,000 PDF documents from VirusTotal and over 20,000
PDF documents from Contagio and successfully discovered eva-
sive samples for all unique 500 selected samples. We analyzed our
model on commercial virus engines in addition to the traditional
benchmark. By generating evasive sample through PDF-GAN, we
identified significant flaws in some AntiVirus engines in the black-
box scenario attack. We determined that one antivirus engine may
outperform the rest, but this does not guarantee that it would be the
best detector. While evasion attacks are still possible on commercial
AntiVirus engines, we suggest that the use of multiple detectors
will prevent such attacks.
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PATIENT SIMILARITY LEARNING VIA BI-CNN WITH ATTENTION
MODULE

As a fundamental topic in the healthcare field, discovering similar patient has relative positive effect on personalized
healthcare scenarios. However, high complexity, irregular, hierarchical, sequential characteristics of EHR data cause
difficulties for measuring similarity directly. In previous studies, most of them ignored the temporal information of EHR data.
The purpose of this paper is to obtain a vector representation of patient historical records with consideration of temporal
characteristics and to learn a method of patient similarity metrics. In this paper, we introduce an attention module into the BI-
CNN framework to implement ‘end-to-end' learning, which can simultaneously obtain vector representation and similarity
metric for patient longitudinal historical records. The experiments are based on real world data and results show that
introducing the attention module can improve the effectiveness of similarity learning. In the end, we also verify the similarity
metric learned by the proposed model is reasonable in the actual situations.

Keywords: patient similarity learning; patient representation; BI-CNN; attention mechanism; CBAM
1. INTRODUCTION

Due to the maturity of big data technology and the increasing medical requirements, the similarity study of patients with
general predictive ability is an important part of precision medicine, which has its increasingly broad application scenarios.
Patient similarity analysis establishes a group of similar patients by measuring the distance between patients and predicts the
target patient's condition by common phenotype of similar cohort. Specifically, patient similarity analysis refers to the
selection of clinical concepts as features of patients in a designated medical environment, and quantitative analysis of the
distance of a series of medical concepts, which could dynamically measure the distance between patients, determine patient
cohort to target patient. In the medical big data scenario, the various features of the patient cohort can theoretically provide
multiple predictions, which has better universality than the model for specific predictive goals.

EHR data is a complex collection of various medical concepts that can be broadly divided into structured data and
unstructured data. Unstructured one has no fixed structure and usually composed of text, images, and signals, while structural
data is stored in a table, which is more applicable for computer processing than unstructured data. EHR data is hierarchical,
heterogeneous and sequential. ‘Sequential’ means that the patient's condition changes with time, that is, the observation
results are different at different time. ‘Hierarchical’ means that there may be multiple medical concepts under each
observation. For example, under a visit of a patient’s profile, multiple medications and multiple procedure may occur.
‘Heterogeneous’ means that the difference between each patient’s profile can be huge, as the frequency of each patient's visit
to the hospital and the medical events under each visit may vary widely. These reasons described above often lead to
difficulties in patient similarity analysis.

The study of patient similarity has a positive influence on the advancement of personalized medicine. For patients, the
development of patient similarity can provide a more accurate personalized medical strategy. For doctors, it can provide
supplementary for decision-making, providing case basis for more diverse treatment plans. For medical systems, accelerating
the development of treatment from proficiency-based art to data-driven science. There are many previous studies on patient
similarity analysis. Some work obtains the patient's vector representation through statistical values of the EHR data. This
approach does not consider that the EHR data is sequential and irregular, and ignore the temporal property. Some work uses
the method of data integration to achieve the effect of dimensionality reduction, and then analyzes the similarity of patients.
These methods are not ‘end-to-end ‘for the analysis of similarity, and require domain knowledge on feature selection. This
limits the ability to generalize the model. There are also some works based on supervised similarity learning. When defining
supervision information, these tasks only consider whether the patient has the same or the same disease, but the patient's
disease development is also a sequential data, this definition obviously loses temporal information.

In order to solve the mentioned problems and challenges, our main purpose is to measure the similarity of complex
patient history records more accurate through models. In this work, by converting the similarity learning problem to a
supervised binary classification problem, we propose a network framework for learning the similarity metric between patient
pairs, which consists of two parts: the former part is based on the Bi-CNN structure to obtain the vector representation of the
patient's historical information, and the latter part is measuring patient similarity based on the supervised metric learning
method. The validation of the model is based on real data, and the results demonstrate that our approach is effective in
improving the performance of subgroup the patient cohort. The main contributions of this work include: (1) Introducing an
attention module into CNN structure to improve the representation of patient historical record. (2) Considering the temporal
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characteristics when defining supervised information, rather than just considering whether patients have same one or several
diseases. (3) Based on the network structure of Bi-CNN and distance metric learning, the ‘end-to-end’ learning process is
achieved, which means the patient similarity metric is obtained as well as the patient's representation.

2. RELATED WORK
2.1 Patient Representation

Converting complex, irregular, time-series EHR data into appropriate patient expression is the first step in the secondary use
of EHR data. Due to lack of domain knowledge, statistics are often used to assess the information for each feature. For
example, the TF-IDF method, TF means term frequency, and IDF means inverse document frequency, the product of which
canbe used to assess the importance of a clinical concept in a medical record in a data set. The importance of concept increases
proportionally with the number of occurrences in the patient's medical record, but at the same time decreases inversely with
the frequency of its occurrence in other patients' medical records. Roque ef al., (2011) used a vector consisting of ICD-10
codes for disease diagnosis to express individual patients, and used TF-IDF method to assign weights to ICD-10 codes: the
greater weight, the higher the more important information is. Then they used the cosine value to calculate the distance between
patients, and use the average connected hierarchical clustering method to divide the patients into 307 sub-groups, exploring
the types and quantities of diseases included in each sub-group. Wang et al., (2015) utilized the diagnosis, medication and
lab tests as features to form the feature matrix, which is normalized by the TF-IDF method, using the unsupervised and the
supervised method to dimensionality reduction, respectively. The patient similarity is determined by Euclidean distance.
Wang et al., (2012) Extracted features from diagnostic codes, drug components, and 1035 laboratory tests, using TF-IDF
method to normalize feature matrix, Euclidean distance is used to define the degree of similarity between patients.

However, the above studies did not consider the temporal characteristics of EHR data when acquiring patient
representation. With the development of deep learning in recent years, due to its superior performance in processing
longitudinal data, some work use neural networks to obtain patient representation and apply it on the corresponding tasks.
Miotto ef al,, (2016) used a three-layer stack of denoising auto-encoders as a deep learning framework to obtain patient
representation. The experiment was based on actual data and was evaluated by two different tasks, disease prediction and
patient classification to validate of the model. Choi ef al., (2016) established vector representations for medical concepts in
the longitudinal EHR data, and the vector representation of each visit is obtained from the sum of the vectors of the medical
concepts occurring under that visit. In the work of Choi et al., (2016), Med2vec is proposed to obtain the vector expression
of each visit by using a multi-layer perceptron. This vector expression also considers two levels of embedding: medical
concept level and visit level. Not only does this work enhance the effectiveness of predictive tasks, the learned interpretable
representations are also meaningful to apply on other problems. Bajor ef al., (2018) used a patient-level embedding method
to obtain the vector representation of the historical record of each patient, and the validity of the representation was validated
on three prediction tasks. The advantage of this expression is that it is lightweight and can quickly get the expression of each
patient. Baytas ef al., (2017) proposed a model that uses a new Time-Aware LSTM module to process irregularly spaced
longitudinal EHR data and obtain effective patient representation by capturing independencies in the sequence. The patients
were then divided into subgroups using K-means clustering. Zhang et al., (2018) proposed a patient2vec framework, by
adding an attention mechanism to the LSTM structure learning an interpretable, complete, personalized patient representation
based on real data to predict whether the patient will be hospitalized within 6 months. The result of experiment indicates that
the method is better than a series of baselines.

2.2 Patient Similarity Learning

Besides using existing distance metrics to directly calculate patient similarity, patient similarity problems can be also
translated into supervised metric learning problems. The purpose of supervised patient similarity learning is to use feedback
from expertise to learn a metric that more accurately measures the similarity between patients. Sun ef a/., (2012) applies the
idea of LMNN (Weinberger et al., 20006) algorithm to patient similarity, and proposes a local supervised similarity learning
algorithm LSML. The algorithm uses the label that expert giving for each pairwise patient as the supervisory information,
which identifies the homogeneous and heterogeneous neighbors within a certain distance to the target patient by comparing
the labels. Then, by narrowing the homogeneous neighbors and pushing away the heterogeneous neighbors, a generalized
Mahalanobis distance is learned. Zhan ef al., (2016) proposed a framework of patient similarity learning, which obtains a
low-dimensional sparse similarity matrix by introducing Group Lasso (Yuan et al., 2006) into the objective function. This
low-rank mapping avoids the shortcomings of the similarity learning algorithm that computational cost is relatively large.
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Figure 1. An illustration of EHR data

Huai et al., (2018) proposed a patient similarity learning framework UnPSL, using maximum likelihood estimation to obtain
the parameters in the similarity function. In addition to this, two regular items were introduced in order to implement sparse
feature selection and uncorrelated feature selection. Suo ef al., (2018) proposed mtTMSL to measure the progression of
patient similarity, which is a multi-task triple constrained sparse metric learning framework. Each task is a distance metric
that learns at a future time point. The optimization is based on triple constrains, which achieves metric learning by bringing
similar patients closer together and dissimilar patients far away from a margin.

However, though these studies improved the algorithm of metric learning, they ignored the temporal relationship of
EHR data when establishing patient representation. Recently, there are some works implemented that learning the similarity
measure of patients and obtaining patient representation with considering temporal property of longitudinal EHR data
simultaneously. Zhu ef al., (2016) represented the longitudinal EHR data of each patient by a matrix, which is constructed by
stacking equal-length embedded vector representations of each visit as the input to the network, which preserves the
expression of the temporal characteristics of the longitudinal data. Based on the structure composed of BI-CNN and
supervised metric learning, a matching matrix is used to calculate the similarity between the two embedded vectors which
derived from deep network. The evaluation of the model is clustering based on the learned similarity metric, and the result is
better than the baseline methods. Suo et al., (2017) proposed a time-fusion CNN framework that not only preserves the local
temporal relationship, but also obtains a global contribution of different time intervals for patient similarity measurement.
The work also made predictions for target patient according to the phenotype of the k nearest patients. Suo et al., (2018)
proposed a CNN-based triple patient similarity learning framework to learn a margin that better separates similar and
dissimilar patients. The experimental results show that the patient similarity learning framework is superior to the comparative
distance metric method. Ni et al., (2017) proposed a depth metric learning framework PSDML to achieve a fine-grained
patient similarity metric by optimizing the quadruple loss function. The model is validated by multi-label KNN classification
of the target patient on the real data set. The result shows that the method can slightly improve the performance of KNN.
Since most of the work is aimed at exploring whether the patient pairs are similar or not, there were not sufficient studies on
similarity of the patient's condition accounted for multiple diseases. Therefore, Zhao ef al., (2018) proposed a BI-CNN
network structure to learn the similarity measure between patient pairs, and then determined whether the patients have the
same phenotype on multiple diseases.

2.3 Attention Mechanism

The attention mechanism is derived from the human visual attention mechanism, and the purpose is to select information that
is more critical to the corresponding task. Using limited attention to capture useful information greatly improves the efficiency
and accuracy of visual information processing. Attention mechanism combined with CNN and RNN structure has achieved
good performance in the field of natural language processing and computer vision (Yin ef al., 2016, Woo et al., 2018, Luong
et al., 2015). With the development of deep learning in the medical field, the attention mechanism has also been applied to
various medical tasks. Zhang et al., (2018) introduced a hierarchical attention mechanism into the LSTM structure to predict
patient hospitalization. The hierarchical attention mechanism consists of within-subsequence and subsequence-level attention.
Furthermore, they also analyzed disease correlations from individual and population level. Suo et al., (2017) segmented each
patient matrix representation and applied convolution and pooling operations to obtain vector representations for each
segmentation. Through learning the weight for each vector, the overall vector representation of each patient is obtained. The
patient similarity learning process is based on this weighted representation. The experimental results showed that the patient
representation obtained by adding the attention mechanism in network is superior than the ones without attention on
classification and clustering problems.
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3. MODEL AND METHOD

In this part, we will introduce how to use the irregular EHR data as the input of the supervised similarity learning network,
how to define the supervision information, and introduce the overall network, an 'end-to-end' framework based on a BI-CNN
architecture with attention module. The vector representation and similarity metric is obtained simultaneously.

3.1 Matrix representations of historical records

The goal of this section is to define the input to the model. As mentioned earlier, since the original EHR is hierarchical, time-
series, irregular data, as shown in Figure 1. If a similarity analysis is to be performed based on the patient's history, the original
EHR data needs to be transformed from a sequential patient medical record consisting of medical concept codes into a
numerical form that is easily processed by the computer. The most primitive approach is to use one-hot representation, but
this high-dimensional representation is difficult to reflect the implicit relationship between medical concepts. In addition, for
each patient, since EHR is longitudinal data, the temporal property should be considered in when obtaining patient
representation. Therefore, we use the matrix to represent the patient's historical medical records, which is obtained by stacking
the same length of embedded vector for each visit.

The historical record of patient p can be represented by a matrix P with size e X v, which e is the pre-defined
embedding dimension. v is the number of visits associated to the patient historical profile. The vector representation for each
visit is obtained by element-sum of the vector representations of all medical concepts under the that visit where the vector
representation of each medical concept is obtained by using the embedding method in natural language processing However,
what we are concerned about is representation of overall representation of patient profile, since patient historical records can
be regarded as an ordered collection of visits and the sequential visit is fixed according to the access date, in order to get a
representation which could capture the temporal information from EHR data, the equal-length representation of visits are
concatenate along the visit order. For the sake of measuring patient similarity, there is a must to get a vector representation
for each patient. There are some previous studies obtain the low-dimensional, dense vector representation for patient profile
by regarding patient historical records as a document, and the visits can be regarded as words like in natural language process.
Through the document-level embedding process (Bajor ef al., 2018, Le et al., 2014), we can not only obtain the visit level
embedding vector, but also same dimensional vector representations for patient historical records. In our work, each visit
includes medical concepts, and also two demographic information, gender and age. Therefore, for each visit can be
represented as a binary vector, the dimension of which is the total number of all medical events over the population in the
dataset. Going along with the network structure of doc2vec in (Le ef al., 2014), any fixed-length representation for visit level
as well as patient-level can be obtained simultaneously. So far, we can obtain a matrix representation of the patient historical
profile, and also get a vector representation of each patient profile through document level embedding.

3.2 Vector representation of patients
3.2.1 CNN based framework

CNN has outstanding advantages in feature extraction because of its powerful representation ability. The feature extraction
is performed on local information through convolution operation. The whole drama information is obtained by integrating
local information. The feature detection layer of CNN learns through training data, avoiding explicit feature extraction but
implicitly learning from training data. Furthermore, due to the sharing of local weights, the complexity of the network is
reduced, which is also a major advantage of convolutional networks over fully connected networks. In this section we will
show how to get the embedded vector representation of the patient's history matrix through the CNN structure.

Feature extraction is first performed through the convolutional layer. Since our goal is to explore the relationship
between accesses in the patient matrix, a 1D filter is used here to perform a convolution operation on the access dimension
of the patient's matrix representation. More specifically, the information in the matrix history map is extracted by using
different filters, and the parameters in each filter are obtained through network optimization. For each filter w € R**¢, where
h represents the size of the filter, which is the number of consecutive visits used to generate features in the convolution
operation. Where e is the embedded dimension for each access defined in the previous work. By performing a feature
extraction with temporal meaning through a convolution operation, we have (1), where * represents the convolution operation,
b € R represents the error term, P,.;, ,_, represents the concatenation of the i_th to the (i + h — 1)_th visit vectors, and the
result ¢; represents a feature obtained after the convolution operation of P;.;,p_1.
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Applying the filter to the entire patient matrix representation with stride of 1, we can obtain v — h + 1 features, where
v is the number of visits. Through these features we can get a feature map c:

¢ =[€1,€3C3 e Cypya] )

The obtained feature map is reduced by the pooling layer. Here we use the max pooling, the purpose is to extract the
most important information in the feature map to get a reduced feature map, which can reduce the computational complexity,
and also make the feature representation more robust and avoid over-fitting.

3.2.2 Convolutional block attention module

Through the above method, the matrix representation of the patient history records can be converted into a vector by
convolution and the pooling layer. However, although the basic convolution operation can capture the temporal information,
there is a limitation that the information is equally treated during this process. In order to further improve the ability of patient
vector representation, we introduce an attention mechanism in the convolutional layer in the network. CBAM (Woo ef al.,
2018), which combined with the spatial level and channel level attention module, but not significantly increase the
computation and parameters. Under the premise of quantity and parameter quantity, the feature extraction capability of the
network can be improved for corresponding task.

The purpose of the channel attention module is to explore which channels in the feature map are meaningful. While the
purpose of the spatial attention module is to determine the network to understand which parts of the feature map have a higher
response at the spatial level. There are m different sizes of filters in the convolutional layer, each filter contains n channels,
and after convolutional layer, m different feature maps can be obtained. Take one of the feature maps as an example to
illustrate the process of CBAM, as shown in Figure 2. On the feature map, a channel level attention module and a spatial
level attention module are sequential generated, which respective denotes as M, M. Then, the element-wise multiplication
® is performed with the input feature map of each module to obtain the output feature map F', F'':

F' = M.(F)QF 3

F" = M,(F")®F' C))

3.2.3 Supervised similarity learning

Patient similarity is derived by an appropriate metric in a specific medical scenario. Given the patient’s vector representation,
there are many distance metrics that can be used to calculate similarities between patients, ¢.g. Euclidean distance. However,
due to the differences of different dimensions, using Euclidean distance means that the features of each dimension are of
equal importance in the distance calculation. To cope with this problem, it is necessary to learn a distance metric for a specific
task according to the data. Similarity learning can be divided into two categories, supervised and unsupervised distance metric
learning. In this paper, the patient similarity problem is converted to a supervised distance metric learning problem. By
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optimizing an objective function, a metric matrix is obtained. In the new characteristic space, the distribution of similar
patients become more closely and dissimilar ones further.

Given the vector representations of two patients x;, x; € R¢, using the method of calculating the similarity in (Zhan et
al., 2016), we have (5), where M € R%*¢ is a symmetric semi-positive matching matrix, which is optimized during training
process.

similarity (x;, %) = x] Mx; %)

The supervised distance metric learning problem usually solved as a binary classification problem. The patient pairs are
classified as two categories, those have been diagnosed by same diseases are regarded as similar pairs, otherwise dissimilar.
The model is optimized by solving the binary classification problem of whether the input patient pair is similar or not. For
the classification problem, we use cross-entropy as the loss function (6), where N is the number of patient pair, Jy is the
prediction of the k_th patient pair, yy, is the supervised information of the kth patient pair, which means they are similar or
dissimilar.

L= %kZ(yk log @) + (1 - y)log(L = 9i) ©

However, in the EHR data, there is no ground truth on the similarity between patients. Thus, how to obtain supervision
information for supervised distance metric learning needs to be considered. In fact, supervision information on patient
similarity should be given by experts according to the corresponding domain knowledge. However, for huge-volume EHR
data, the workload on manual labeling is huge, and the similarity given by different experts also could cause bias. In order to
label the patient pairs, previous studies indirectly obtained supervision information from the similarity of the physician's
diagnostic information to the patient. Specifically, whether the patient pair has same one or multiple diseases or not. The
reason for this is that the diagnostic information can be regarded as a summary of the patient's overall condition at that visit,
moreover, the diagnosis information of a patient over a period of time can be regarded as a summary of the expert's evaluation
on the patient. Hence, it is reasonable that obtain supervisory information from this. However, the diagnostic information is
also sequential information with temporal characteristics. In practice, only by considering whether the patient pair has the
same disease is not sufficient. Therefore, for the sake of sequential property, we use the longest common subsequence (Rivault
et al., 2017) as the basis for defining the supervision information y, which is based on the similarity of the disease trajectory
over time. Where d;, d; denote as the diagnostic trajectory of patient i, j , LCS denotes the longest common subsequence, ||
denotes the number of elements in the sequence.

e {1, if|LCS(d; dp)| = 2
0, otherwise

(™

3.2.4 Overall architecture

The network structure is shown in Figure. 4, the process of transforming embedded matrix representations which contain the
temporal information of patient historical profiles into vector representations and performing similarity learning through a
CNN structure with CBAM is implemented. The preceding part of this BI-CNN based network is able to accept the two
characteristic matrices of patient pair, which is weight sharing. For each branch, we use two CNN blocks to extract the
features from the original matrix. In each CNN block, we draw on the idea in the inception module (Szegedy ef al., 2015)
which implement feature extraction by increasing the width of the network. As shown in Figure 5, the aim of different
convolutional layer is extracting different features, and max pooling layers are used to reduce the intermediate representation.
Then the feature maps derived from different branch is concatenate together as a feature map for next step processing. Besides,
we introduce CBAM on each CNN block to enhance the capability of representations. The 1 * 1 convolutional operation is
used to aggregate the cross-channel information so that reduce the dimension of the feature map to obtain the vector
representation. The patient similarity is calculated by a matching matrix based on the patient vector representations. In the
end, the fully connected layer is used to derive whether the input patient pairs are similar or not. This 'end-to-end' network
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structure has many advantages: no need to intervene feature extraction process manually, optimize the parameters in the
network for the specific task through the original input directly, and increase the consilience of the model.
4. EXPERIMENTS
There are 4.8 million people in South Korea having diabetes in 2018 (Bae ef al., 2018). As a prevalent chronic disease,
diabetes and its complications have heavy threat to people's health. We conduct experiments on real word dataset, learning
the similarity metric for diabetic patients, and validate the learned similarity metric is reasonable in real medical situation.
4.1 Datasets
The data is provided by Korea National Health Insurance Service and covers 12 years of EHR data. We filter the diabetes
related visit records according to patient’s diagnostic information, and sort visits with the same patient ID in order of date
and then extracted gender, age, and medical concepts of medication, procedures, sub diseases as well as diagnostic
information to reconstruct the EHR dataset for diabetic patients. In order to avoid bias caused by extreme data, those patients
with fewer than 3 visits and visits with more than 12 drugs, 6 tests, and 10 sub diseases are dropped out.

4.2 Experiment setting

In this section we will introduce the implementation details of the model, the baseline methods to be compared with and the
validation experiments.
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4.2.1 Historical record embedding

In order to obtain a matrix representation of the patient's history, we first use the demographic information and medical events
in the EHR data as input features to obtain equal-length vector representations of visits, including gender, age group,
medication, procedure, and other diseases. Specifically, the closely-spaced visits are more diagnostic correlation along with
patient’s condition. We use doc2vec to obtain the distributed representations of visits. Experiments are performed on two
models, distributed memory and distributed bag of words, and the embedding dimensions were set to 128 and 256,
respectively. We choose distributed memory model with embedding dimension e = 128 which caused better performance.
Thus, each patient's historical records can be converted from sequence of visits which represented by various medical codes
in the raw dataset to a matrix representation by concatenate those equal-length visit vectors. In the real EHR data, the visit
times for each patient is very likely to be different. For the reason of same size input characteristics of CNN, we use padding
method to obtain a fixed-size matrix by zero vectors. This matrix based patient representation not only aggregates
demographic information and historical records on variety of medical events, but also preserves the temporality of historical
records.

4.2.2 Model implementation

Firstly, through training the model, we can obtain the optimized parameters in the network. The performance on the test set
proves that our model can enhance the ability on patient similarity learning. We compare the performance of the proposed
model with the one without the attention module. In addition, we also compare with the model using L2-norm for measuring
similarity in the network instead of using the matching matrix for the purpose of validating our model that the ability to
measure similarity can be enhanced. We randomly select 1.2 million patient pairs as experimental data, and the ratio of
training set to test set was 9:1. The model is implemented by MXNET (Chen e al., 2015) and optimized by adam (Kingma
etal, 2014).

4.2.3 Validation experiment

In order to more intuitively verify the validity of the proposed model for patient similarity measurement, we use the learned
similarity measure method in two experiments, respectively.

The purpose of the experiment 1 is to determine the similarities between patients within and between groups of diabetic
and non-diabetic patients. We select 10 diabetic patients as the sample of diabetic patients group and do the same to non-
diabetic patients. Through the proposed model, the intra-group similarity calculation is conducted for the patients within the
diabetic patient group and the non-diabetic patient group, and the similarity calculation is also conducted for the patients from
two different groups. Experiment 2 includes two sections which respective represents as experiment 2-1 and 2-2. The purpose
of experiment 2 is to investigate intra and inter-group similarities of diabetic patients in different age groups. We select 10
diabetic patients from the ages of 40 years old, 40 to 60 years old, and over 60 years old. The similarity of the patients within
each group and between these three groups are calculated by the proposed method.

The rationality of learned similarity measure method is validated by the relationship between the similarities within and
between these patient groups.

4.3 Results
4.3.1 Similarity learning results

Since we convert the similarity learning problem to a supervised binary classification problem, we compare the proposed
model with the performance of baseline work under the binary classification task, and the results show that the proposed
model is outperformed to baseline methods. We also train the network that with same structure of our proposed except the
attention mechanism, CBAM. Furthermore, we also compare to the Bi-CNN networks which uses the L2-norm to measure
the distance of with and without the CBAM. We choose recall, precision and F1 score as the performance indicators. The
experimental result is shown in Table 1.

In Table 1, the models with using L2-norm for measuring the embedded patient vector representation distance is inferior
than the performance which based on the matching matrix. Because the distance metric based on L2-norm is operated in the
original space, whereas the matching matrix can map the data to a new space according to the similarity label. To optimize
the parameters in the matrix, the matching matrix can map the data in the original space to a new one, in which the patient
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pairs can be classified more accurately. In addition, we have found that networks with attention mechanism perform better
than those that do not, which indicates that the introduce the attention mechanism has a positive effect on feature extraction
on specific tasks. In general, by solving the problem of patient similarity learning into a supervised binary classification
problem, our proposed model can not only improve the representation ability of embedded vector through the attention
mechanism, but also learning distance metric from supervised information through matching matrix, which also leads to a
better performance.

Table 1. Performance of similarity learning process

CNN_L2 CNN_CBAM L2 CNN_matrix CNN_CBAM_matrix
Recall 0.8735 0.8713 0.8802 0.9064

Precision 0.8735 0.8756 0.8821 0.9067

F1 score 0.8712 0.8688 0.8801 0.9064

4.3.2 Validation results

First, we calculate the similarity between the patients in the diabetic group, the similarity between the non-diabetic patient
group, and the similarity between the patients from these 2 groups respectively. The similarity between patients with diabetes
is generally higher than the similarity between non-diabetic patients. The similarities between diabetic patients and non-
diabetic patients are extremely low. To quantify the results, the statistical values of the similarities of each set of experiments
are shown in Table 2. The similarity between diabetic patients is relatively higher than that between non-diabetic patients and
between diabetic and non-diabetic patients. This is because the patient historical records in the diabetic group show more
correlations on medication, sub-diseases and procedures. Since the patients in the non-diabetic group were randomly selected
from the whole dataset, it is obvious that they involved few similar medical events in their profile. In addition, the similarity
between the diabetic patient group and the non-diabetic patient group is also relatively low, but higher than that in the non-
diabetic patient group. This is due to the variety of complications caused by diabetes. These complications and their associated
therapeutic drugs may coincide similar with the drugs for non-diabetic patients. For instance, diabetic patients with both high
blood pressure and those with only high blood pressure will have similar conditions in the treatment of hypertension and
cardiovascular diseases. However, these slight similarities could not make big contribution to the patient similarity measure
based on the patient's entire historical profile, as the impact of these factors are minor to the overall history of patients of non-
diabetic patients.

Table 2. Statistical values of diabetic patient and non-diabetic patient similarity (experiment 1)

Diabetic patient Non-diabetic patient Diabetic & Non—diabetic
patient
Mean 0.280 0.000 0.000
Max 0.998 0.000 0.005
Min 0.000 0.000 0.000

We also conduct similarity validation experiment for diabetic patients under different age groups. We selected 10
patients from each age group of the age under 40, 40-60 and over 60 as samples, and calculated the intra-group similarity of
these three groups of diabetic patients. The statistical values are shown in Table 3. From the results that the overall differences
of three groups is not significant. However, the mean value of the similarity within the group under 40 years old was slightly
lower than that of the other two groups, and the difference in the average of intra-group similarity between 40 to 60 years old
and over 60 years old is not significant. This is because that among diabetic patients under the age of 40, there are patients
with type 1 diabetes, which is usually caused by hereditary factors. Although the difference of treatment for type 1 diabetes
is small, the difference in sub-sick is quite large, resulting in a large difference in the therapeutic drugs for sub-sick. The
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average intra-group similarity of these three groups is generally slightly higher than that of the diabetes patient group in
validation experiment 1, because age is an important factor for the general condition of diabetic patients. The similarity of
patients in different age groups was slightly higher, which also validates that our proposed similarity measure can reflect the
objective factor that age is related to the progression of diabetes.

Table 3. Statistical values of diabetic patient similarity in different age group (experiment 2-1)

Diabetic patient under 40 Diabetic patient between Diabetic patient over 60
40-60
Mean 0.367 0.470 0.469
Max 0.998 0.998 0.999
Min 0.000 0.000 0.000

In addition, we use the proposed method to measure the similarity between diabetic patients from three different age
groups. There is little difference with the distribution of similarity within each age group. The statistical values of patient
similarity between different age groups is shown in Table 4. In Table 4, the average similarity involved with the diabetic
patients who are from under 40 years old age group is slightly lower than that between 40 to 60 and 60 years old. By removing
type 1 diabetes patients in the group of under 40 years of age, we found that the average similarity between the group and the
age group of 40-60 increased from 0.361 to 0.395, as well as the similarity of the group over 60 years old and under 40 years
old increased from 0.360 To 0.440. Therefore, this slight change is also due to the fact that some patients with diabetes under
the age of 40 are caused by type 1 diabetes, which is more dissimilar to the patients in other two groups. The relatively high
degree of similarity between the groups of diabetic patients aged 40 to 60 and over 60 years old is due to the overlap of
treatments for sub-sick in older patients with diabetes. Moreover, the mean of the average similarity between the three groups
is 0.4096, which is basically consistent with the mean similarity between the diabetic patients which ignore the age difference
invalidation experiment 1.

Table 4. Statistical value of diabetic patient similarity between different age groups (experiment 2-2)

Diabetic patient under 40 & | Diabetic patient under 40 & | Diabetic patient between
Diabetic patient between Diabetic patient over 60 40-60 & Diabetic patient
40-60 over 60
Mean 0.361 0.360 0.489
Max 1.000 0.750 0.997
Min 0.000 0.000 0.000

In validation experiments, we considering the distribution of similarity for patients in the diabetic and non-diabetic
patient groups. The similarity of intra diabetic patient group is much higher than that of non-diabetic patients. When
considering the similarity of different age groups of diabetic patients, the distribution of similarity slightly differed with age
groups, but the average similarity is basically the same with the mean similarity value between the diabetic patients which
ignore the age difference in validation experiment 1. Therefore, the proposed model is generally reasonable for measuring
patient similarity in real situation.

5. CONCLUSION

Temporal information plays an important role in the patient's historical records, especially for the patients with chronical
diseases. In order to capture the temporal information in the patient historical records and measure the similarity between
patients, it is necessary to obtain a vector representation of the patient historical records, which contains temporal property.
Patient similarity learning is based on pairwise constraint to learn a metric matrix that can effectively measure the similarity
between patients. Compared with the basic distance metric, patient similarity learning can make the patient representation
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transform to a new characteristic space according to the learned matching matrix, which causes that the distances between
similar patients are more compact, whereas dissimilar patients samples distributed far away. The matching matrix for
measuring similarity between patient pairs is learned by converting the similarity learning problem to a supervised binary
classification problem. The parameters in matching matrix is optimized through training process. In this work, we use matrix
representation to preserve the temporal characteristics of longitudinal EHR data, and to improve the ability of patient vector
representation to improve the similarity learning performance by introducing attention mechanisms in the BI-CNN based
framework. Inthe end our experimental results validate that the proposed method can not only improve the accuracy of patient
similarity learning process, it is also verified by validation experiments that the learned similarity measure is reasonable in
the practical scenario. In future work, we will use the learned similarity metric to implement the task of subgrouping patients
in real medical scenario.
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Abstract — Multi-class image classification can be ambiguous to separate among similar
classes as some classes share more similarities than others. This can be solved by using
hierarchy, that is, by performing image classification reflecting hierarchical structure of
categories. After arbitrarily defining hierarchy of the dataset in heuristic way based on
human knowledge, the classifier using Convolutional Neural Networks (CNN) can classify
the classes in hierarchical order by outputting multi-step classifying results. However, this
vanilla hierarchical Convolutional Neural Networks model requires heuristic process prior
to the CNN classifier, this model can be further developed by making the whole process
automatized. This automation can be achieved by using data inheritance. Some of data
consisting the dataset will share some feature, which can be denoted as data inheritance. By
applying clustering method before classification, the model can first find hierarchy of the
dataset in data-driven way, and then use the hierarchy to classify into levels of classes. This
proposed model is Automatized Multi-step Hierarchical Convolutional Neural Networks
(AMH-CNN). AMH-CNN is a single automatized model of finding shared hidden
similarities in data, defining hierarchy by itself, and then outputting classification results
reflecting hierarchical structure of the dataset. This study has contribution as a knowledge-
embedded classifier outputting hierarchical information because this is the first study
automatizing multi-step classification process by data-driven way to define hierarchy of
training data categories based on data inheritance. Qur implementation using VGGNet on
Fashion-MNIST dataset has shown that AMH-CNN achieves better classification results
than our benchmark results.

Keywords — Convolutional Neural Networks; hierarchy;, multi-step; automation; image

classification
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1. INTRODUCTION

1.1. Motivation of Research

As large amount of image data has been surged with the help of search engines and social
network services, fashion industry has been also flooded with considerable image usage, e.g.
catalog images, fitting images, and product images on online shop, and therefore, there have
been diverse necessity and application of image analyzing methodologies in the fashion field.
First, it can be used in apparel segmentation (Hu et al. 2008). Second, it can be used in apparel
recognition (Bossard et al. 2012), (Wang and Zhang 2011, Eshwar et al. 2016). Third, apparel
classification and content-based retrieval can help users by product search and
recommendation (Alzu'bi et al. 2017, Liu et al. 2012, Liang et al. 2015, Hara et al. 2016).
Fourth, apparel classification can be carried out for tagging products (Bossard et al. 2012,
Eshwar et al. 2016).

These applications can be implemented by conventional machine learning methods such as
Support Vector Machine (SVM), Principal Component Analysis (PCA) and Linear
Discriminant Analysis (LDA) in the past studies (Taigman et al. 2014). In more recent studies,
with large enough training data and the advanced computational power with multiple cores of
CPU and the usage of GPU, deep learning methods such as Convolutional Neural Networks
(CNN), and Recurrent Neural Networks (RNN), are introduced to solve the issue of lack of
capacity to handle large-scaled and unstructured data (Tsantekidis et al. 2017). These deep
learning methods have been processing estimation and classification problems such as financial
market prediction, speech recognition, hyperspectral image classification, medical image
retrieval, image captioning, face recognition systems, objects detection, disaster management,
age recognition, and adult content filtering (Karathanasopoulos et al., 2018, Iliukovich-
Strakovskaia et al. 2016, Muhammad et al. 2018, Qayyum et al. 2017, Tsantekidis et al. 2017,
Wehrmann et al. 2018, Yu et al. 2017).

For apparel classification tasks using CNN, several considerations need to be made for these
applications. First, elaboration in the apparel classification algorithm is needed due to apparel
property. Some apparel classes have similar characteristics and can be ambiguous such as pants
and tights (Eshwar et al. 2016, Hara et al. 2016). And these apparel images can be taken in
different conditions such as variations in the angle and light, cluttered backgrounds, occlusions
made by other objects or subjects, and deformation by stretched or folded manners (Wang and
Zhang 2011). Second, classification process should reflect the hierarchy of apparel categories,

that is, to present multiple output results of hierarchical labels instead of presenting single final
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output label. Hierarchical structure has been recently discussed on image recognition in a few
studies. As explained in the study of Zeiler and Fergus (2014), lower layers of CNN extract
lower-level features, e.g. salient blobs and edges of the shape in the dog image, and higher
layers extract sophisticated features, e.g. detailed characteristics of face and body in the dog
image. In this sense, we can apply hierarchical categorization on layers composing CNN.
Lower layers of CNN can represent coarse categories, while higher layers can do fine-grained
subcategories. This idea of hierarchical classification has been suggested in earlier studies with
MNIST and CIFAR datasets (Yan et al. 2015, Zhu and Bain 2017), and in recent study with
Fashion MNIST dataset (Seo and Shin 2019).

1.2. Research Objectives

With consideration of above research contexts, multi-class classification has long been studied
in previous studies (Malakooti and Zhou 1994) as it is tricky to separate among similar classes
because some of classes share more similarities than others. Therefore, a novel approach is
needed for multi-class apparel classification to separate far different classes first and then to
discriminate among similar classes. In other words, it is to reflect hierarchical structure in
classification process outputting multi-step classifying results. This multi-step hierarchical
classifier is proposed as Hierarchical Convolutional Neural Networks (H-CNN) in the previous
study of Seo and Shin (2019). This model requires prior process of defining the hierarchy. First,
the hierarchy of apparel category needs to be defined in heuristic approach. The hierarchy can
be arbitrarily defined following the general apparel category system used in apparel business,
for instance, classifying into tops and bottoms, and so on. After this prior process, then the
heuristic hierarchy is used to train H-CNN classifier.

However, in this study, we suggest that this multi-step hierarchical classification with prior
process can be automatized into single algorithm by using the property of data inheritance. We
cannot pinpoint which data groups share more similarities and can be clustered together, but
some data groups are closer to each other, and to find this shared pattern, for example, Artificial
Neural Networks (ANN) including CNN has been used to find hidden feature in data (Baesens
et al. 2003). Based on this property of data inheritance, these groups of data can be clustered
into hierarchical group by data-driven approach using clustering algorithm such as k-means.
Therefore, in this study, we propose Automatized Multi-step Hierarchical Convolutional
Neural Networks (AMH-CNN), which combines the process of defining hierarchy of apparel
category and training the classifier based on this hierarchy into single automatized algorithm
based on data-driven approach. Fig 1. describes the proposed concept of automation of defining

the hierarchy and training the classifier.
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Fig. 1. Flowchart of Automatized Multi-step Hierarchical Convolutional Neural Networks
(AMH-CNN).

Therefore, the proposed model no longer requires the prior process of heuristically defining the
hierarchy of the dataset to train the CNN classifier as the model itself performs clustering the
apparel category groups using k-means algorithm and defines the hierarchy of apparel dataset
prior to train the classifier based on the clustered results. Furthermore, our hypothesis is that
the classification results of hierarchical apparel classifier can be improved when the classifier
is trained with hierarchy that is driven by clustering algorithm rather than hierarchy defined by
human knowledge.

The contribution of this paper can be that as an extension study of applying hierarchical
classification of apparel images using CNN, we are proposing knowledge embedded multi-
class classification model rather than simple classification model outputting single value.
Previous studies have been limited to vanilla classification resulting single outcome value for
each class. However, this multi-step model presents multiple outcome values of three levels
reflecting hierarchical structure to improve the error and inference related issues of multi-class
classification. That is, by separating far different classes first, we can reduce the classification
error and can also ease the interpretation of softmax values. Another contribution can be that,
to our best knowledge, this is the first study automatizing the heuristic process of defining the
hierarchy of training data groups prior to training the classifier. Moreover, we hypothesize that
the accuracy of hierarchical classification model can be improved when the hierarchy to train
the model is defined by clustering algorithm based on data-driven approach than heuristically
defined based on human knowledge.

The remainder of this paper is organized as follows. Section 2 summarizes several related
works. Section 3 gives an overview of proposed method. Section 4 introduces dataset and

experiment design. Section 5 presents results of experiment and Section 6 concludes this paper.
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2. RELATED WORK

2.1. Convolutional Neural Networks (CNN)

CNN is comprised of convolutional layer for generating feature maps, pooling layer for
reducing the dimensionality of feature maps, and fully-connected layer for understanding and
classifying the extracted features (Ferreira and Giraldi 2017). By stacking these layers, various
CNN architectures can be formulated, and among architectures winning ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) are AlexNet (Krizhevsky et al. 2012) with top-5 error
rate of 16.4%, ZFNet (Zeiler and Fergus 2014) with 11.7% error rate, VGGNet (Simonyan and
Zisserman 2014) with 7.3% error rate, and so on. We implement our proposed model on
VGGNet, which is composed 16 or 19 convolutional and fully-connected layers. It uses
combination of two 3x3 filters on convolutional layers having effects of a receptive field with
larger filter such as one 5x5 sized filter while decreasing the number of used parameters. In
addition, VGGNet doubles the number of filters after each pooling layer, which enables
shrinking its spatial dimensions while increasing its depth.

2.2. Apparel Classification

In the earlier studies of apparel image classification, image feature is extracted by Histograms
of Oriented Gradients (HOG), Local Binary Pattern (LBP), color moment, and color histogram
(Liu et al. 2012). In recent studies, CNN has been used to elaborate the process of extracting
feature in apparel image classification (Eshwar et al. 2016). In more recent studies, however,
fine-grained classification of apparel category is implemented based on sophisticated feature
extraction of CNN classifier (Iliukovich-Strakovskaia et al. 2016). The research expands the
classification scope by sub-dividing shoes category into 107 subcategories, however,
classifying over 100 classes with a single plain classifier needs to be further speculated by
conceiving hierarchical classification where classification is made by multiple levels.

2.3. Hierarchical Classification

Hierarchical image classification using deep learning methodology is first proposed in the
study of Yan et al. (2015) demonstrating the idea that some classes are more confusing than
others as it is relatively easy to tell apple from bus while telling apple from orange is harder.
The proposed model, Hierarchical Deep Convolutional Neural Networks (HD-CNN), will first
use an initial coarse classifier CNN to separate the easily separable classes, which denoted as
coarse classes, and later the fine classes. HD-CNN is trained by a multinomial logistic loss and
anovel temporal sparsity penalty. However, their proposed model is composed of two different
classifier training separately with multiple stages of training. In another study of hierarchical

image classification model for CNN classifier, Branch Convolutional Neural Network (B-
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CNN), is introduced with BT-strategy for single process of training each level outcomes and
phasing multiple levels of categories as first coarse-level, second-coarse level and finally fine-
level hierarchy (Zhu and Bain 2017). However, in any of above studies, the way to define the
hierarchy of categories is not suggested as they arbitrarily define the hierarchy based on human
perception rather than based on data-driven approach. In addition, this process of defining the
hierarchy was not included in their proposing models, rather it was considered as separate prior
process by the researcher. This implies that the classification results of their proposing models
can be affected by the researcher’s definition of the hierarchy, and this whole process cannot
be automatized into a single model.

2.4. Clustering

Clustering is to identify a set of objects into groups in the purpose of grouping data to make
objects in the same cluster more similar to each other than to objects from other clusters
(Saxena et al. 2017). Clustering analysis is a statistical multivariate analysis technique based
on unsupervised learning with extensive applications in various domains such as financial fraud,
medical diagnosis, image processing, information retrieval, and bioinformatics (Bai et al. 2017).
This unsupervised learning process is also used as a preliminary step for data analytics such as
identification of the patterns hidden in gene expression data, data summarization for big data
to address the associated storage and analytical issues, and selection of representative insurance
policies from a large portfolio to build metamodels (Gan and Ng 2017).

Clustering algorithms can be divided into four types hierarchical, partitional, density-based,
and grid-based clustering (Bai et al. 2017). Among these types, hierarchical clustering and
partitional clustering are mostly applied for data analytic purpose. Hierarchical clustering is to
represent the nested grouping of patterns and similarity levels at which groupings change using
dendrogram (Jain et al. 1999). Hierarchical clustering algorithm can be achieved by several
methods including single-link and complete-link. Partitional clustering is to obtain a single
partition of objects rather than dividing into hierarchical structure. This type of clustering is
used when the number of target objects is large or when the construction of a dendrogram is
computationally prohibitive. However, this type of clustering accompanies with the problem
of deciding the number of desired clustering outputs. Among partitional clustering method, k-
means is the simplest and most widely used method based on a squared error criterion.

These clustering methods can be applied in the areas of image segmentation, object and
character recognition, document retrieval, and data mining (Jain et al. 1999). In one of previous
studies, clustering has been done using PCA and k-means clustering to propose a new method

to find significant features of the urban identity from public space (Chang et al. 2017). In the
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study of Kamper et al. (2017), the Embedded Segmental k-means (ES-KMeans) model is
introduced for speech processing. In another study of Xing et al. (2017), clustering method has
been deployed in the context of privacy preservation as a mutual privacy preserving using k-
means clustering scheme, which neither discloses individual’s private information nor leaks

the community’s characteristic data.

3. PROPOSED METHOD

3.1. Single-step Model

To compare the results of our suggesting AMH-CNN model, we implement single-step model
without hierarchical structure. Moreover, to verify whether our experiment results are valid and
can reach the same results with other networks, we conduct our proposing AMH-CNN structure
on both VGG16 and VGG19, which are the most widely used networks among VGGNets
(Simonyan and Zisserman 2014, Wang et al. 2015). For the base model, both VGG16 and
VGG19 are composed of five building blocks as shown in Fig. 2 and Fig. 3. These models

output single multi-class label at the end of each network.

VGG16 Single-step Model

Block 1

l

Block 2

l

Block 3

l

Block 4

l

Block 5

Prediction

Fig. 2. CNN Architecture of VGG16 single-step model with single multi-class output.
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VGG19 Single-step Model
Block 1

l

Block 2

Block 3

Block 4

Block 5

Prediction

Fig. 3. CNN Architecture of VGG19 single-step model with single multi-class output.

3.2. Automatized Multi-step Hierarchical Convolutional Neural Networks (AMH-CNN)
Model

AMH-CNN models follow same structural design of five building blocks as base models as
shown in Fig. 4 and Fig. 5. However, these models have additional blocks below the five
building blocks. We put three additional blocks followed by each prediction block outputting
three levels of classified labels, which makes difference with the base models. The first
underneath branch denotes the first coarse-level block, the second branch for the second coarse-
level block, and the last branch for the fine-level block. All these additional blocks are
composed of fully-connected neural networks. As input image goes through the AMH-CNN
model, three prediction values of coarse 1 level, coarse 2 level, and fine level will be computed
in the order. For example, when an input image of sweater is inserted, the first coarse level
branch will indicate ‘clothes’, the second coarse level branch will indicate ‘tops’, and the final

branch will indicate ‘pullover’ as output predictions.
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CNN classifier of VGG16 AMH-CNN Model

Block 1
Block 2
Coarse 1
Block
Block 3 |
Coarse 1
Prediction
Block 4 Coarse 2
Block
Coarse 2
Block § Prediction
Fine
Block
Fine
Prediction

Fig. 4. CNN Architecture of VGG16 AMH-CNN model with three-levels of multi-class

outputs.

CNN classifier of VGG19 AMH-CNN Model

Block 1
Block 2
Coarse 1
Block
Block 3 l
Coarse 1
Prediction
Block 4 Coarse 2
Block
Coarse 2
Blodc5 Prediction

Fine
Block

Fine
Prediction

Fig. 5. CNN Architecture of VGG19 AMH-CNN model with three-levels of multi-class

outputs.
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4. Experiments

4.1. Dataset

For the input dataset of our proposed model, we use Fashion-MNIST dataset, which consists
of 50,000 images of training set and 10,000 images of test set (Xiao et al. 2017). Each grayscale
image is sized 28x28 pixels and classified into 10 classes including ‘t-shirt’, ‘trouser’,
‘pullover’, ‘dress’, ‘coat’, ‘sandals’, ‘bag’, ‘shirt’, ‘sneaker’, and ‘ankle boots’. However, to
output the classification result into three-level hierarchy, we further develop the dataset into
hierarchical structure, which will be discussed in Section 5.1.

4.2. Hierarchical Clustering

To define the hierarchy of the dataset, our proposed model first performs clustering with
Fashion MNIST dataset by using k-Means clustering. The k-Means clustering algorithm can
be implemented by following four steps (Jain et al. 1999):

1. The number of k cluster centers is chosen to either coincide with k randomly chosen
patterns or k randomly defined points inside the hypervolume containing the pattern
set.

2. Each pattern is assigned to the closest cluster center.

3. The cluster centers are recomputed using the current cluster memberships.

4. The process is repeated if a convergence criterion is not fulfilled.

To put these steps into equation (Xing et al. 2017), the number of participants is 7 with each
participant A; having sample data a; and the participants should be clustered into k clusters
of Ui, ..., Uy with the j% center cluster u;. Each cluster center is randomly assigned. The
sample data a; belongs to its cluster U; if the center u; is the nearest according to Eq. (1)
and the mean of the samples in U; is computed following Eq. (2), where /{c; =/} equals 1 if
{c;=/}, else 0.

. 2
Eq. (1) ¢;:= arg minlla; — u|

£ @y - et
Among wide varieties of criteria to measure the distance between a sample and the related
cluster center, Euclidean distance is most widely used (Xing et al. 2017). For each iteration,
the algorithm reassigns the data to the nearest centers according to Eq. (1) and recomputes the
cluster centers following Eq. (2). This iteration is repeated until there is no or little change in

the cluster centers. Note, however, that as presented in the study of Jain (2010), determining
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the number of clusters in the first step is one of the most difficult and important issues in
clustering process.

4.3. Convolutional Neural Networks (CNN) Classifier

For single-step base models, the number of epochs is set to 60 times and the size of batch to
128. Different learning rates are applied as 0.001 in the initial stages, 0.0002 after the 42th
epoch, and 0.00005 after the 52th epoch. Stochastic Gradient Descent (SGD) is used with 0.9
of momentum. For AMH-CNN models, same parameters are used as single-step models for
number of epochs, batch size, learning rates, and gradient descent. However, to reflect the
differences in the importance of each level of classes, different loss weights are applied on each
level. In the initializing stage, we assign higher value than the later stages as the low-level
feature extraction affects a lot on the result. Therefore, loss weights change as [0.98, 0.01, 0.01]
in the first epoch, [0.10, 0.80, 0.10] in the 15th epoch, [0.1, 0.2, 0.7] in the 25th epoch, [0, O,
1] epoch in the 35th epoch.

5. RESULTS

5.1. Hierarchical Clustering

Before defining the hierarchy of Fashion MNIST dataset using k-means algorithm, the model
first needs to decide on how many levels and how many clusters per each level to allocate for
the dataset. Elbow method is a method which finds the percentage of variance explained as a
function of the number of clusters (Bholowalia and Kumar 2014). This method is used before
applying k-means clustering algorithm so that to define the number of clusters by finding the
minimized total intra-cluster variation or total within-cluster sum of square (WSS). In other
words, the method aims to find the number of clusters where adding another cluster does not
give much better modelling of the data. Elbow method first initializes the number of clusters
with k= 1. Then, it increments the value and measures the cost of the optimal quality solution
until the point when the cost of the solution drops dramatically.

Elbow method is performed on Fashion MNIST dataset to find the legitimate number of
clusters and the result is plotted in Fig.6. Before the test, the model first randomly samples 100
images per each class of Fashion MNIST dataset and uses these sampled data for clustering. It
then computes clustering algorithm for different values of kfrom 1 to 10 clusters. And for each
k; it calculates the total WSS and draws the curve of WSS according to the number of clusters
k After this test, as shown in Fig.6., we can see the first bent area, which is denoted as elbow,

when the number of clusters kis 2, and we can also find the second elbow between 4 to 6.

e /1



& 2MRIE fiet M= S2{AH MOL 2E=EH (1)

72 ®

= ="

These elbow parts in the plot can be considered as indicators of the appropriate number of
clusters. The rationale behind this finding is that after reaching the point where the cost drops
dramatically and showing plateau, even if one increases the number of clusters, the cost will

not change or improve.

1e9 The Elbow Method
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within cluster sum of squares
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Fig. 6. Elbow method result to determine optimal number of clusters for k-means clustering.

Furthermore, the model performs additional prior test to determine right number of levels
within the hierarchy of our used dataset. From the dendrogram result shown in Fig. 7, we can
infer that for the Fashion MNIST dataset, the total 10 classes can be first grouped into two
clusters and then further divided into the second-level of coarse clusters. The dendrogram in
Fig. 7 shows the result of k-means to visualize optimal level of hierarchy. The model can first
divide into two groups of leftmost and middle + rightmost. And it can further divide into two
groups from leftmost group and three groups from middle + rightmost group. Here, we can
infer that for the Fashion MNIST dataset, the total 10 classes can be first grouped into two
clusters and then further divided into second level of coarse clusters. Therefore, we can
conclude that 10 fine-levels of Fashion MNIST dataset classes can be clustered into first
coarse-level groups and second coarse-level groups, which, in other words, the dataset has the
hierarchical structure of two coarse-level and final fine-level clusters. Therefore, the model can
conclude that 10 fine-levels of Fashion MNIST dataset classes can be clustered into first
coarse-level groups and second coarse-level groups, which, in other words, the dataset has the

hierarchical structure of two coarse-level and final fine-level categories.

il e e bR iR e aatadbaiilahes i

Fig. 7. Dendrogram result of k-means to visualize optimal level of hierarchies.
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Based on above results from Elbow method and hierarchical clustering using dendrogram, the
model finds the adequate number of clusters and levels to define the hierarchy of Fashion
MNIST dataset, that is, the right value of kto apply k-means clustering algorithm. The model
starts the clustering process setting kas 2, which results in t-shirt, trouser, dress, shirt, pullover,
and coat into one cluster and sandal, sneaker, bag, and ankle boot into the other cluster. Then
for the first cluster, it further performs clustering with &= 3. T-shirt, trouser, and dress belong
to one group, shirt forms another group by itself, and pullover and coat are the other group. For
the second cluster of the first clustering result, kis set to 2 and the result comes out with sandal
and sneaker into one group while bag and ankle boot into the other group. Table 1 summarizes
the results of k-means algorithm on Fashion MNIST dataset. The numbers indicate the number

of images classified into the cluster.

TABLE 1 SUMMARY OF K-MEANS ALGORITHM RESULT ON FASHION MNIST

DATASET
k=2 k=3
cluster 0 cluster 1 cluster 0 cluster 1 cluster 2
T-Shirt 72 28 57 37 6
Trouser 81 19 80 19 1
Dress 73 27 69 30 1
Shirt 68 32 12 50 38
Pullover 75 25 2 35 63
Coat 89 11 15 18 67
k=2
cluster 0 cluster 1
Sandal 0 100 926 4
Sneaker 0 100 96 4
Bag 46 54 24 76
Ankle Boot 22 78 16 84

From the clustering results, the proposed model can define the hierarchy of the dataset. Fig.8.
shows the hierarchical classes of dataset based on heuristic approach, which was used in the
previous study of Seo and Shin (2019), while Fig.9. shows hierarchical classes of dataset based
on data-driven clustering approach, which we are proposing in this paper. Hierarchy with
heuristic approach has been labeled with apparel-related taxonomy by human knowledge,
while hierarchy with clustering approach is labeled with number as it is resulted from data-

driven approach. Slight changes have been made between these two hierarchies.
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Shirt Ankle boot

Fig. 8. Hierarchical classes of dataset based on heuristic approach.

Coarse 1level 0 1
Coarse 2 level 0 1 24 3 4
T-Shirt Shirt Pullover Sandal Bag
Fine level Trouser Coat Sneaker Ankle boot

Dress

Fig. 9. Hierarchical classes of dataset based on data-driven clustering approach.

5.2. Convolutional Neural Networks (CNN) Classifier

We first compare the results of AMH-CNN models using clustering method for defining
hierarchy with single-step base models and vanilla H-CNN models using heuristic knowledge
to define the hierarchy. Table 2 shows final loss and accuracy of each of these models. The
VGG16 single-step model has 0.0005 of training loss and 0.9999 of training accuracy. The loss
reduces to 0.0002 and the accuracy improves to 1.0000 in H-CNN model of same architecture,
while the AMH-CNN model achieves 0.0003 of training loss and 0.9999 of training accuracy.
During test set, VGG16 single-step model has 0.4644 of loss and 0.9289 of accuracy, which
improves to 0.3781 of loss and 0.9352 of accuracy with H-CNN model, and even more into
0.3782 of loss and 0.9366 of accuracy with AMH-CNN model.

In another comparison among different experiments with VGG19 architecture, we aim to
observe whether the results are consistent with another architecture. The VGG19 single-step
model has 0.0006 of loss and 0.9999 of accuracy on the training set, which get improved to
0.0002 of loss and 1.0000 of accuracy with both VGG19 H-CNN and AMH-CNN models. For
the results of test set of VGG19 architecture, single-step model has 0.4356 of loss and 0.9290
of accuracy, H-CNN model shows better results of 0.4102 of loss and 0.9333 of accuracy, and
finally, AMH-CNN model achieves even better results of 0.4043 of loss and 0.9349 of accuracy.
We can observe that during the test set, the loss of single-step model can be decreased using
H-CNN model and can be reduced even more using AMH-CNN model. As well as the loss,
the accuracy of single-step model can be improved using H-CNN model and can be increased

even more using AMH-CNN model.
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TABLE 2 FINAL LOSS AND ACCURACY ON VGG16 SINGLE-STEP MODEL, VGG19
SINGLE-STEP MODEL, AND BOTH H-CNN AND AMH-CNN MODELS ON VGGl16

AND VGGI19
Single-step I;;[g(ilf AMH-CNN

Model Model
. Loss 0.0005 0.0002 0.0003

Train
VGGG Accuracy 0.9999 1.0000 0.9999
Test Loss 0.4644 0.3781 0.3782

es

Accuracy 0.9289 0.9352 0.9366
) Loss 0.0000 0.0002 0.0002

Train
Accuracy 0.9999 1.0000 1.0000

VGG19

Test Loss 0.4356 0.4102 0.4043
Accuracy 0.9290 0.9333 0.9349

Moreover, we observe that both H-CNN and AMH-CNN models converge faster than base
single-step models. Fig. 10 shows plots of accuracy for each model during 60 epochs, while
Fig.11 shows the plots of loss. Numbers of specific loss and accuracy value per epoch are also
suggested in Table 3. We can notice that as well as the previous H-CNN model, our proposing
AMH-CNN model can reach lower loss and higher accuracy faster than single-step models as
the graphs go steeper in both VGG16 and VGG19 AMH-CNN models in the earlier stage. This
signifies that AMH-CNN model with data-driven hierarchy can also contribute the speed of

convergence.
(@) . ®) (©
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Fig. 10. Accuracy per epoch in each model.
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Fig. 11. Loss per epoch in each model.

TABLE 3 LOSS AND ACCURACY PER EPOCH ON VGG16 SINGLE-STEP MODEL,
VGGI19 SINGLE-STEP MODEL, AND BOTH H-CNN AND AMH-CNN MODELS ON

VGG16 AND VGGI19
VGG16 Single-step Model VGG19 Single-step Model
Train Test Train Test
Epoch Loss Accuracy Loss Accuracy Loss Accuracy Loss Accuracy
1 0.4087 0.8600 0.3966 0.8620 0.8404 0.7473 0.9565 0.6503
5 0.2022 0.9261 0.3006 0.8960 0.2498 0.9112 0.2898 0.8954
10 0.1070 0.9606 0.3584 0.8930 0.1401 0.9501 0.3612 0.8866
15 0.0604 0.9778 0.3976 0.9000 0.0840 0.9701 0.3350 0.9152
20 0.0442 0.9842 0.4195 0.9000 0.0522 0.9810 0.3458 0.9195
25 0.0214 0.9923 0.4198 0.9200 0.0338 0.9878 0.3894 0.9163
30 0.0170 0.9939 0.4266 0.9160 0.0215 0.9927 0.4066 0.9147
35 0.0141 0.9953 0.4719 0.9100 0.0194 0.9928 0.4308 0.9138
40 0.0098 0.9965 0.4605 0.9100 0.0132 0.9957 0.4218 0.9241
45 0.0085 0.9970 0.4535 0.9260 0.0099 0.9968 0.4486 0.9218
50 0.0043 0.9985 0.5178 0.9210 0.0075 0.9974 0.4427 0.9215
55 0.0056 0.9983 0.4831 0.9200 0.0077 0.9977 0.4438 0.9237
60 0.0005 0.9999 0.4644 0.9289 0.0006 0.9999 0.4356 0.9290
VGG16 H-CNN Model VGG19 H-CNN Model
Train Test Train Test
Epoch Loss Accuracy Loss Accuracy Loss Accuracy Loss Accuracy

1 0.0683 0.5565 0.1319 0.3361 0.0753 0.5026 0.0657 0.3362
5 0.0169 0.8378 0.0197 0.8542 0.0188 0.8341 0.0164 0.8563
10 0.2537 0.8274 0.1776 0.8542 0.2646 0.8163 0.2252 0.8330
15 0.0876 0.9250 0.1346 0.9072 0.0915 0.9236 0.1224 0.9087




AMH-CNN: An Automatized Multi-step Hierarchical Convolutional Neural Networks Based on Data Inheritance

20 0.1707 09233  0.2390 0.9038  0.1762  0.9203  0.2275  0.9049
25 0.0505 09771  0.2302  0.9199  0.0627 0.9724  0.2319  0.9175
30 0.0628  0.9783  0.3482  0.9063  0.0649  0.9770  0.3999  0.8925
35 0.0321 09895  0.3912  0.9149 0.0375  0.9873 0.3553  0.9154
40 0.0138  0.9953  0.3573  0.9263  0.0208  0.9929  0.3833  0.9210
45 0.0007 09999  0.3494 09328  0.0010 09998  0.3686  0.9333
50 0.0003 1.0000  0.3717 09342  0.0003 1.0000  0.3989  0.9333
55 0.0002 1.0000  0.3768  0.9348  0.0002 1.0000  0.4072  0.9334
60 0.0002 1.0000  0.3781  0.9352  0.0002 1.0000  0.4102  0.9333

VGG16 AMH-CNN Model VGG19 AMH-CNN Model
Train Test Train Test

Epoch Loss Accuracy Loss Accuracy Loss Accuracy Loss Accuracy
1 0.0698  0.5432  0.1699  0.2363  0.0708  0.5065  0.1658  0.2194
5 0.0195  0.8328 0.0191 0.8569 0.0188 0.8362 0.0166  0.8591

10 03357 0.8220  0.2507 0.8556 0.3360 0.8162  0.2510  0.8468
15 0.1266  0.9265 0.1718  0.9100  0.1255 0.9263  0.1602  0.9194
20 0.1727 0.9267 0.2563 0.9092 0.1732 0.9286 0.3119 0.8819
25 0.0510 09792  0.3042 0.9101  0.0524 09788  0.2519  0.9245
30 0.0624 09788  0.3861  0.9086  0.0589  0.9797  0.3220  0.9195
35 0.0288  0.9901  0.3644  0.9256 0.0350 0.9887 0.4075 09132
40 0.0212  0.9928 0.4188 0.9181  0.0218 0.9928 0.3688  0.9266
45 0.0007 0.9999 0.3404 0.9358 0.0007 0.9999 0.3644 0.9341
50 0.0003  1.0000 0.3723  0.9361  0.0003  1.0000  0.3951  0.9341
55 0.0003  1.0000 0.3754  0.9367 0.0002 1.0000 0.4014  0.9344
60 0.0003  0.9999  0.3782  0.9366  0.0002  1.0000 0.4043  0.9349

To compare our results with the existing classification results on Fashion MNIST dataset, we
put several classification accuracy results of other data mining methods and other single-step
CNN configuration in Table 4. Above four models in Table 4 are suggested value in the work
of Bhatnagar et al. (2017). In their study, they propose a state-of-the-art model to classify
images in the Fashion-MNIST dataset based on deep learning architectures. Their proposed
model consists of two convolutional and max-pooling layers, which is denoted as CNN2,
trained by batch normalization, denoted as BatchNorm, with residual skip connections, denoted
as Skip. They compared their result with previously used classifier such Support Vector
Classifier (SVC) and Evolutionary Deep Learning (EDEN). From the test accuracy suggested
in Table 4, H-CNN models in both VGG16 and VGG19 achieve higher accuracy than
previously used classifier of SVC and EDEN and even better than the state-of-the-art
classification result using convolutional configuration of CNN2 + BatchNorm + Skip.
Furthermore, our proposing AMH-CNN models with both VGG architectures outperform the
results of H-CNN models.
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TABLE 4 CLASSIFICATION RESULTS COMPARISON OF FASHION MNIST DATASET

WITH LITERATURES

Model Test Accuracy
SVC 0.8970
EDEN 0.9060
CNN2 0.9117
CNN2 + BatchNorm + Skip 0.9254
VGG16 0.9289
VGG19 0.9290
VGG16 H-CNN 0.9352
VGG19 H-CNN 0.9333
VGG16 AMH-CNN 0.9366
VGG19 AMH-CNN 0.9349

6. CONCLUSION

With current development in deep learning methodologies, image recognition using CNN is
widely applied on fashion images for human detection, apparel classification, apparel retrieval,
and automatic apparel tagging. However, even though those datasets have complicated
hierarchical categories and their category labeling systems follow the hierarchical structure,
hierarchy has not been considered in image classification process. To handle multi-class
apparel classification, multi-step classification can reflect hierarchical structure of apparel
classes on the classifying process of apparel image. Hierarchical Convolutional Neural
Networks model trains the classifier with arbitrarily defined hierarchy of apparel category.
However, as this hierarchical model requires prior process of defining the hierarchy of apparel
category in heuristic approach, we therefore automatize this prior process and propose a single
multi-step hierarchical classification model, called Automatized Multi-step Hierarchical
Convolutional Neural Networks (AMH-CNN).

AMH-CNN clusters the apparel category groups using k-means algorithm, and following the
clustered results, it defines the new hierarchy of apparel dataset to train the classifier. This
classifier is based on VGGNet which consists of five building blocks of multiple convolutional,
max-pooling and fully-connected layers. Proposed architecture is applied on Fashion-MNIST
dataset which is 28x28 sized grayscale images of 10 classes consisting of 50,000 training
images and 10,000 test images. Following the result of k-means algorithm, AMH-CNN
reclassifies the dataset into three levels clusters. Whenever input image goes through AMH-
CNN model, three prediction values of coarse 1 level, coarse 2 level, and fine-level will be
computed in the order.

To compare the performance, we suggest experiment results of both VGG16 and VGG19
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architectures in base single-step models, vanilla Hierarchical Convolutional Neural Networks
(H-CNN) models, and our proposing AMH-CNN models. Results have shown that when using
both multi-step H-CNN and AMH-CNN models have better classifying results than the base
single-step model without hierarchical structure, and among those multi-step results, the data-
driven AMH-CNN model achieves higher accuracies. We conclude that AMH-CNN brings
better performance in classifying apparel images.

Our proposed classifier has several contributions first as a knowledge embedded classifier by
providing additional information of hierarchical structure after multiple staged output learning
strategy rather than providing single label output, and second as an automation of multi-step
both reflecting data inheritance and hierarchical structure. Moreover, proposed model achieves
higher classification accuracy than benchmark models. Furthermore, as with growing interest
in Explainable Artificial Intelligence and its diverse approaches, our proposing model can
contribute as a cue to ease and justify the inference and interpretation from the softmax
classification results.

Further developments can be made for the future study. In relation to enhancing the
performance of the proposed model, one can pre-trained the AMH-CNN classifier with
ImageNet dataset to reduce time spent on training the classifier as transfer learning allows
improvement in accuracy and enables the classifier to be trained well regardless of the size of
target dataset. Or AMH-CNN can be implemented on different architectures such as ResNet,
DenseNet or other CNN architectures and one can compare the time spent on training and
computational cost. Meanwhile, one can also compare the classification accuracy to figure out

the best suited CNN architecture for AMH-CNN model.
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Figure 1: Qualitative results of our method on the CelebA [27] and ImageNet [36] dataset respectively. Each row has the
same content while each column has the same reference.

Abstract

This paper tackles the automatic colorization task of
a sketch image given an already-colored reference image.
Colorizing a sketch image is in high demand in comics, an-
imation, and other content creation applications, but it suf-
Sfers from information scarcity of a sketch image. To address
this, a reference image can render the colorization process
in a reliable and user-driven manner. However, it is diffi-
cult to prepare for a training data set that has a sufficient
amount of semantically meaningful pairs of images as well
as the ground truth for a colored image reflecting a given
reference (e.g., coloring a sketch of an originally blue car
given a reference green car). To tackle this challenge, we
propose to utilize the identical image with geometric distor-

* indicates equal contribution

tion as a virtual reference, which makes it possible to secure
the ground truth for a colored output image. Furthermore,
it naturally provides the ground truth for dense semantic
correspondence, which we utilize in our internal attention
mechanism for color transfer from reference to sketch in-
put. We demonstrate the effectiveness of our approach in
various types of sketch image colorization via quantitative
as well as qualitative evaluation against existing methods.

1. Introduction

Early colorization tasks [48, 21, 22] have focused on col-
orizing a grayscale image, which have shown great progress
so far. More recently, the task of colorizing a given sketch
or outline image has attracted a great deal of attention in
both computer vision and graphics communities, due to its
significant needs in practice. Compared to a grayscale im-
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age, which still contains the pixel intensity, a sketch image
is information-scarce, making its colorization challenging
in nature. To remedy this issue, generally two types of ap-
proach of imposing additional conditions to the sketch im-
age have been explored: user hints and reference image.

As explained in Section 2.2, there are previous works uti-
lizing a reference or already-colored image, which shares
the same semantic object of the target image. It requires
an ability for the model to establish visual correspondences
and inject colors through the mappings from the reference
to the target. However, due to the huge information discrep-
ancy between the sketch and reference, the sketch coloriza-
tion guided by the reference is still under-explored com-
pared to other sketch-based tasks (Section 2.1). Moreover,
there are few datasets containing the labels of the correspon-
dence between the two images, and the cost of generating a
reliable matching of source and reference becomes a critical
bottleneck for this task over a wide range of domains.

In this work, we utilize an augmented-self reference
which is generated from the original image by both color
perturbation and geometric distortion. This reference con-
tains the most of the contents from original image itself,
thereby providing a full information of correspondence for
the sketch, which is also from the same original image. Af-
terward, our model explicitly transfers the contextual rep-
resentations obtained from the reference into the spatially
corresponding positions of the sketch by the attention-based
pixel-wise feature transfer module, which we term the spa-
tially corresponding feature transfer (SCFT) module. Inte-
gration of these two methods naturally reveals groundtruth
spatial correspondence for directly supervising such an at-
tention module via our similarity-based triplet loss. This di-
rect supervision encourages the network to be fully opti-
mized in an end-to-end manner from the scratch and does
not require any manually-annotated labels of visual cor-
respondence between source-reference pairs. Furthermore,
we introduce an evaluation metric which measures how
faithfully the model transfers the colors of the reference in
the corresponding regions of sketch.

Both qualitative and quantitative experiments indicate
that our approach exhibits the state-of-the-art performance
to date in the task of information-scarce, sketch coloriza-
tion based on a reference image. These promising results
strongly demonstrate its significant potentials in practical
applications in a wide range of domains.

2. Related work
2.1. Sketch-based Tasks

Sketch roughly visualizes the appearances of a scene or
object by a series of lines. Thanks to its simple, easy-to-
draw, and easy-to-edit advantages, sketch has been utilized
in several tasks including image retrieval [20], sketch recog-
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nition [25], sketch generation [3, 29], and image inpaint-
ing [33]. However, due to the lack of texture and color in-
formation in sketch image, the research on sketch-based im-
age colorization, especially reference-based colorization, is
quite challenging and still under-explored.

2.2. Conditional Image Colorization

The automatic colorization has a limitation that users
cannot manipulate the output with their desired color. To
tackle this, recent methods come up with the idea of col-
orizing images with condition of the color given by users,
such as scribbles [38], color palette [49, 28, 45], or text
tags [18]. Even though these approaches have shown the
impressive results in terms of the multi-modal colorization,
they unavoidably require both precise color information and
the geometric hints provided by users for every step.

To overcome the inconvenience, an alternative approach,
which utilizes an already colored image as a reference, has
been introduced. Due to the absence of geometric corre-
spondence at the input level, early studies [17, 1, 20,4, 7, 2]
utilized low-level hand-crafted features to establish visual
correspondence. Recent studies [10, 47, 40] compose the
semantically close source-reference pairs by using features
extracted from the pre-trained networks [10, 47] or color
histogram [40] and exploit them in their training. These pair
composition techniques however tend to be sensitive to do-
mains, thereby limit their capability in a specific dataset.

Our work presents a novel training scheme to learn visual
correspondence by generating augmented-self reference in
the self-supervised manner at the training time, and then
demonstrates it’s scalability on various type of datasets.

3. Proposed method

In this section, we present our proposed model in de-
tail, as illustrated in Fig. 2. We first describe overall work-
flow of the model and its two novel components called (1)
Augmented-Self Reference Generation (Section 3.2) and
(2) Spatially Corresponding Feature Transfer Module (Sec-
tion 3.3). We then present our loss functions in detail.

3.1. Overall Workflow

As illustrated in Fig. 2, given a color image I in our
dataset, we first convert it into its sketch image I, using an
outline extractor. Additionally, we generate an augmented-
self reference image I, by applying the thin plate splines
(TPS) transformation. Taking these two images I, and I, as
inputs, our model first encodes them into activation maps f
and f, using two independent encoders Fs (1) and E, (1),
respectively.

To transfer the information from 7, to /s, we present a
SCFT module inspired by a recently proposed self-attention
mechanism [41], which computes dense correspondences
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Figure 2: An overall workflow of our self-augmented learning process.

between every pixel pair of I, to /. Based on the visual
mappings from SCFT, context features fusing the infor-
mation between [, and I, passes through several residual
blocks and our U-net-based decoder [35] sequentially to ob-
tain the final colored output.

3.2. Augmented-Self Reference Generation

To generate a reference color image [, for a given sketch
image I, we apply to original color image I two nontriv-
ial transformations, appearance and spatial transformation.
Since I, is essentially generated from I, these processes
guarantee that the useful information to colorize I exists in
I, which encourages the model to reflect I, in the coloriza-
tion process. The details on how these transformations oper-
ate are described as follows. First, the appearance transfor-
mation a(-) adds a particular random noise per each of the
RGB channel of 7. The resulting output a(I) is then used
as the ground truth I, for the colorization output of our
model. The reason why we impose color perturbation for
making reference is to prevent our model from memorizing
color bias, which means that a particular object is highly
correlated with the single ground truth color in train data
(i,e., ared color for apples). Given difterent reference in ev-
ery iteration, our model should reconstruct different colored
output for the same sketch, by leveraging I, as the only path
to restore Iy,;. In other words, it encourages the model to ac-
tively utilize the information from F, not just from F, and
generates reference-aware outputs at test time. Afterwards,
we further apply the TPS transformation s(-), a non-linear
spatial transformation operator to a(I) (or I,;), resulting in
our final reference image I,.. This prevents our model from

lazily bringing the color in the same pixel position from 7,
while enforcing our model to identify semantically mean-
ingful spatial correspondences even for a reference image
with a spatially different layout, ¢.g., different poses.

Spatially Corresponding Feature Transfer Module

r
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Figure 3: An illustration of spatially corresponding feature
transfer (SCFT) module. SCFT establishes the dense corre-
spondence mapping through attention mechanism.

3.3. Spatially Corresponding Feature Transfer

The goal of this module is to learn (1) which part of a
reference image to bring the information from as well as (2)
which part of a sketch image to transfer such information to,
i.e., transferring the information from where to where. Once
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Figure 4: Qualitative comparison of colorize results with the baselines trained on the wide range of datasets. Note that the
goal of our task does not reconstruct the original image. All results are generated from the unseen images. Please refer to the
supplementary material for details.

obtaining this information as an attention map, our model
transfers the feature information from a particular region
of a reference to its semantically corresponding pixel of a
sketch.

To begin with, each of the two encoders £, and F; con-
sists of L. convolutional layers, producing L. activation maps
(fY, £%,---, f¥) including intermediate outputs. Now we
downsample each of them to match the spatial size of f~
and concatenate them along the channel dimensions, form-
ing the final activation map V/, i.e.,

V= [e(fY;e(f2); 5 f'7] (1)

where ¢ denotes a spatially downsampling function of an
input activation map f' € R¥*wi<e (o the size of f» €
R *wexes 7.7 denotes the channel-wise concatenation
operator. In this manner, we capture all the available low-
to high-level features simultaneously.

Now we reshape V into V. = [v1,v9,  ,vpy] €
R% > where v; € R% indicates a feature representation
of the 7* region of the given image and d, = 3 lL:I c. We
then obtain 7 of V; and v} of V, from the outputs of the
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sketch encoder F; and the reference encoder F,., respec-

tively. Given v} and v7, our model computes an attention

matrix A € R " whose element o;; is computed by

the scaled dot product [4 1], followed by a softmax function

within each row, i.e.,

(Wevi) - (ka;“)) ®
Vd, ’

where Wy, W, € R% >4 represent the linear transforma-
tion matrix into a query and a key vector, respectively, in
the context of a self-attention module, and /d, represents
a scaling factor. oy is a coefficient representing how much
information v; should bring from v7. Now we can obtain
the context vector v; of the position 7 as

o = softmax (
J

o] = W', (3)
J

where W,, € R% <% ig the linear transformation matrix
into a value vector containing the color feature in a seman-
tically related region of a reference image.
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Finally, v is added to the original feature v; of a sketch
image to form the feature vector enriched by the informa-
tion of the corresponding region in the reference image, i.e.,

¢ =v] + ] (€))
¢; is then fed into the decoder to synthesize a colored image.
3.4. Objective Functions

Similarity-Based Triplet Loss. When applying the spatial
transformation s(-), each pixel value in the output image
is represented as a weighted average of pixels in the input
image, revealing the spatial correspondences of pixel pairs
between I, and I,. In other words, we can obtain the full
information of the weight w;;, which represents how much
the #** pixel position of the input image, or a query, is re-
lated to the %" pixel position of the output, or a key. Then,
the value of w;; can be considered as the pixel-to-pixel cor-
respondence, which can work as the groundtruth for super-
vising how semantically related the pixel of the reference to
a particular pixel of sketch image.

Utilizing this pixel-level correspondence information,
we propose a similarity-based triplet loss, which is a variant
of triplet loss [39], to directly supervise the affinity between
the pixel-wise query and key vectors used to compute the
attention map .4 in Eq. (2). The proposed loss term is com-
puted as

‘Ct‘f - max(O, [_S(v% @z) + S(v% Q)Z) + ’Y])? (5)

where S(-,-) computes the scaled dot product. Given a
query vector v, as an anchor, v% indicates a feature vec-
tor sampled from the positive region, and v} is a negative
sample. v denotes a margin, which is the minimum distance
S(wvg,vY) and S(vg,v}') should maintain. £, encourages
the query representation to be close to the correct (posi-
tive) key representation, while penalizing to be far from the
wrong (negatively sampled) one. This loss plays a crucial
role in directly enforcing our model to find the semantically
matching pairs and reflect the reference color into the cor-
responding position.

The reason we adopt triplet loss instead of commonly
used losses such as Lq-loss is that the latter can overly pe-
nalize the affinities between semantically close but spatially
distant query and key pixel pairs. This misleading result can
be mitigated by only penalizing two cases: the semantically
closest pair (positive sample) and randomly-sampled except
it (negative sample), which is basically a triplet loss.

We further conduct a user study to compare the effects
of our triplet loss to another possible loss, i.e., L-loss and
no supervision. Details about the experimental settings and
results are explained in Section 6.2 in the supplementary
material.

L1 Loss. Since the groundtruth image I ; is generated as
Section 3.2, we can directly impose a reconstruction loss to

penalize the network for the color difference between the
output and the ground truth image as below:

Lrec = ]E[H G(IS7Ir) - Igt ||1] i (6)

Adversarial Loss. The discriminator D, as an adversary of
the generator, has an objective to distinguish the generated
images from the real ones. The output of real/fake classifier
D(X) denotes the probability of an arbitrary image X to
be a real one. We adopt conditional GANs which use both
a generated sample and additional conditions [34, 44, 15].
In this work, we leverage the input image /s as a condition
for the adversarial loss since it is important to preserve the
content of I, as well as to generate a realistic fake image.
The loss for optimizing D is formulated as a standard cross-
entropy loss as

Logy = Eg,, 1, log D1, 1))

7
+E;, 1. [log(l — D(G(Is, I,,), 1,))] . @

Perceptual Loss. As shown in previous work [33], percep-
tual loss [16] encourages a network to produce an output
that is perceptually plausible. This loss penalizes the model
to decrease the semantic gap, which means the difference
of intermediate activation maps between the generated out-
put I and the ground truth 7, ¢ from the ImageNet [36] pre-
trained network. We employ a perceptual loss using multi-
layer activation maps to reflect not only high-level seman-
tics but also low-level styles as

Lpere =E |3 u(D) =&y 1|, ®
1

where ¢; represents the activation map of the [‘th layer ex-
tracted at the relul_1 from the VGG19 network.

Style Loss. Sajjadi ef al. [37] has shown that the style loss
which narrow the difference between the covariances of ac-
tivation maps is helpful for addressing checkerboard arti-
facts. Given ¢; € REHXWi_the style loss is computed
as

Loyie =E[Il 6(&n(D) = G Ty) 1], ©

where G is a gram matrix.
In summary, the overall loss function for the generator G
and discriminator D is defined as

min max ﬁtatal - )\trﬁtr + )\recﬁrec + )\advﬁadv
G D (10)
+ Apercﬁperc + )\styleﬁstyla

3.5. Implementation Details

We implement our model with the size of input image
fixed in 256x 256 on every datasets. For training, we set the
coefficients for each loss functions as follows: Agqy = 1,
Aree = 30, Ay = 1, Apere = 0.01, and Ay = 50. We
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ImageNet Human Face Comics Hand-drawn
Methods Cat | Dog | Car CelebA Tag2pix | Yumi’s Cells | Edges— Shoes
Sun et al. [40] 160.65 168 192.00 75.66 122.14 72.45 124.98
Huang et al. [13] || 281.44 | 271.47 | 258.36 173.12 76.00 132.90 86.43
Lee et al. [24] 151.52 | 172.22 | 70.07 68.43 91.65 63.34 109.29
Huang et al. [12] || 257.39 | 268.69 | 165.84 160.22 97.40 148.52 190.16
(a) Ours w/o Ly, 77.39 | 10949 | 54.07 53.58 47.68 51.34 79.85
(b) Ours full 74.12 | 102.83 | 52.23 47.15 45.34 49.29 78.32

Table 1: Quantitative comparisons over the datasets with existing baselines by measuring FID [11] score: a lower score is

better.

set the margin of the triplet loss v = 12 for overall data. SC-PSNR (dB)
We use Adam solver [19] for optimization with 51 = 0.5, Methods Cat | Dog | Car
B2 = 0.999. The learning rate of generator and discrimi- Sun et al. [40] 9.65 | 11.19 | 942
nator are initially set to 0.0001 and 0.0002 for each. The Huang et al. [13] || 10.33 | 12.67 | 845
detailed network architectures are described in Section 6.5 Lee et al. [24] 11.54 | 12.08 | 9.94
of supplementary material. Huang etal. [12] || 9.25 | 949 | 7.77
(a) Ours w/o L, || 12.76 | 13.73 | 10.56
4. Experiments (b) Ours full 1323 | 14.37 | 11.34

This section demonstrates the superiority of our ap-
proach on wide range of domain datasets (Section 4.1) in-
cluding real photos, human face and anime (comics). We
newly present an evaluation metric, named SC-PSNR de-
scribed in Section 4.2, to measure the faithfulness of reflect-
ing the style of the reference. Afterwards, we compare our
method against the several baselines of related tasks quan-
titatively as well as qualitatively (Section 4.3). An in-depth
analysis of our approach is described across Section 4.4-4.5.

4.1. Datasets

Tag2pix Dataset. We use Tag2pix dataset [18], which
contains large-scale anime illustrations filtered from Dan-
booru2017 [&], to train our model for comic domain. Al-
though there are various tag labels on this dataset, we
only utilize images to train the model owing to our self-
supervised training scheme. It consists of one character
object with white background images. We partition into
54,317 images for train, 6036 images for test and then com-
bine source-reference pairs by randomly sampled from the
test set for evaluation.

Yumi Dataset. Like Yoo et al. [40], we collect images from
the online cartoon named Yumi’s Cells for the outline col-
orization of the anime domain. The dataset contains repeat-
edly emerging characters across 329 episodes. With this
limited variety of characters, the network is required to find
the correct character matching even if there is no explicit
character supervisions. We randomly split into a train set of
7,014 images and test set of 380 images, and then manually
construct source-reference pairs from the testset to evaluate
the performance of the models.

N e

Table 2: Quantitative comparisons over the SPair-71k with
existing baselines by measuring SC-PSNR (dB) score: a
higher score is better.

SPair-71k Dataset. SPair-71k dataset [31], which is manu-
ally annotated for a semantic correspondence task, consists
of total 70,958 pairs of images from PASCAL 3D+ [43]
and PASCAL VOC 2012 [0]. We select two non-rigid cate-
gories (cat, dog) and one rigid category (car), of which we
can gather sufficient data points from ImageNet [36]. Note
that this dataset is used to measure SC-PSNR (Section. 4.2)
score only for the evaluation purpose.
ImageNet Dataset. As above-mentioned, we collect sub-
classes that correspond to three categories (i.e., cat, dog,
car) from ImageNet [30] dataset and use them for training
data. Tmages in each class are randomly divided into two
splits with an approximate ratio of 9:1 for training and vali-
dation.
Human Face Dataset. Our method can be applied to col-
orize a sketch image of human face domain as well. To
support this claim, we leverage CelebA [27] dataset, which
have commonly been used for image-to-image translation
or style transfer tasks. Training and validation sets are com-
posed as the ImageNet dataset are.
Edges—Shoes Dataset. We use Edges—Shoes dataset,
which contains pairs of sketch-color shoes images that have
been widely used in image-to-image translation tasks [23,
1 as well. This enables a valid evaluation between our
method and existing unpaired image-to-image translation



Reference—Based Sketch Image Colorization using Augmented-Self Reference and Dense Semantic Correspondence

Content Reference w/o L,

w/o L Ltyie Full

percs
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TmageNet Human Face Comics Hand-drawn
Loss Functions Cat | Dog | Car CelebA Tag2pix | Yumi’s Cells | Edges— Shoes
Loyee 82.10 | 143.76 | 68.45 77.70 58.00 52.86 91.10
Lyee + Lady 78.56 | 110.86 | 56.54 54.75 48.71 51.96 82.55
Lrec + Lagy + Lpere + Lstyle 77.39 | 10949 | 54.07 53.58 47.68 51.34 79.85
Lyee + Logy + Lpere + Lsiyie + Ly || 7412 | 102.83 | 52.23 47.15 45.34 49.29 78.32

Table 3: FID scores [ 1 1] according to the ablation of loss function terms described in Section 4.4. A lower score is better.

approaches.

4.2. Evaluation Metrics

Semantically Corresponding PSNR. This work proposes
a novel evaluation metric to measure how faithfully the
model transfers the style of reference in the correspond-
ing regions. In the traditional automatic colorization setting
where a groundtruth image is available, pixel-level evalua-
tion metric, such as peak signal-to-noise ratio (PSNR), has
been widely used. In reference-based colorization setting,
however, there is no ground truth that have both the shape
of the content and the style of the reference.

The key idea behind the semantically corresponding
PSNR (SC-PSNR) is leveraging the datasets created for
keypoint alignment tasks [0, 43, 31], thereby providing
patch-level groundtruth. We use SPair-71k dataset [31]
which contains semantically corresponding annotation pairs
between two different images. Only the pixel values in a
certain size of patch surrounding the corresponding key-
points of two images are used instead of the whole pixels
for computing mean square error (MSE), and then PSNR is
computed with the MSE. We refer to this measurement as
the SC-PSNR.

Fig. 6 shows first and last two examples of images
queried by the leftmost image. The list of images are re-
trieved in a decreasing order of the value of SC-PSNR be-
ing computed with query. This figures demonstrates that this
metric captures perceptually plausible distance of the pixel
values between the keypoint regions of two images.
Fréchet Inception Distance (FID) [11]. FID is a well-
known metric for evaluating the performance of a gener-

Query Highest

Figure 6: Different colors of points denote different key-
point annotations on cat face, e.g., eyes and noses.

ative model by measuring the Wasserstein-2 distance be-
tween the feature space representations of the real images
and its generated outputs. A low score of FID indicates that
the model generates the images with quality and diversity
close to real data distribution.

4.3. Comparisons to Baselines

We compare our method against recent deep learning-
based approaches on the various types of datasets both qual-
itatively and quantitatively. The baselines are selected from
not only the colorization task [28, 40] but also the related
problems tackling multi-modal image generation, such as
exemplar-guided image translation [13, 24] and style trans-
fer [12].

Fig. 4 shows the overall qualitative results of our model
and other baselines on 35 different datasets. Datasets vary
from real image domain like ImageNet or Human face
dataset to sketch image domain like Edges— Shoes, Yumi’s
Cells, and Tag2pix. The leftmost and second column are
sketch and reference, respectively. On every dataset our
model brings the exact colors from the reference image and
injects them into the corresponding position in the sketch.

e 91



WlE 2MXIE et Lt F2AH MOL HE=2E (1)

—_

For example, our model colorizes the character’s face in
third row with red color from the reference, while baselines
tend not to fully transfer it. Likewise, in fifth row, inner side
of the shoes and shoe sole are elaborately filled with the
color exactly referencing the exemplar image.

We report on Table 1 the FID score calculated over the
7 different datasets. Our method outperforms the existing
baselines by a large margin, demonstrating that our method
has the robust capability of generating realistic and diverse
images. Improved scores of our model with triplet loss indi-
cates that £, plays a beneficial role in generating realistic
images by directly supervising semantic correspondence.

Table 2 presents the other quantitative comparisons in re-
gard to the SC-PSNR scores as described in Section 4.2. We
measure SC-PSNR only over cat, dog and car dataset which
are subclasses belonging to both ImageNet and SPair-
71k [31]. Our method outperforms all the baseline models,
demonstrating that our model is superior at establishing vi-
sual correspondences, and then generating suitable colors.

We conduct a user study for human evaluation on our
model and other existing baselines, as shown in Fig. 8.
The detailed experimental setting is described in Section
6.2 in the supplementary material. Our model occupies a
large percentage of Top1 and Top2 votes, indicating that our
method better reflects the color from the reference and gen-
erates more realistic outputs than other baselines.

4.4. Analysis of Loss Functions

We ablate the loss functions individually to analyze the
effects of the functions qualitatively, as shown in Fig. 5
and quantitatively, as shown in Table 3. When we remove
Ladv, OUtput image contains inaccurate colors emerging in
the background and dramatically appears unrealistic. With-
out Ly, character’s back hair, forehead and ribbon tail are
colorized with wrong color or even not colorized. The FID
score in Table 3 third row also represents that model gener-
ates unrealistic output. This degraded performance is due to
the absence of supervision which encourages to match the
semantically close regions between content and reference.
When we remove L. and L., the colorization tends
to produce color bleeding or visual artifacts since there is no
constraint to penalize the model for the semantic difference
between the model output and the ground truth. Image gen-
erated with full losses have exact colors in its corresponding
regions with fewer artifacts.

4.5. Visualization of Attention Maps

Fig. 7 shows an example of an attention map A learned
by our SCFT module. In this module, each pixel from the
sketch is used as a query to retrieve the relevant local infor-
mation from the reference. In the case of left-eye region as a
query (red square in (a)), we visualize the top three, highly-
attentive regions in the reference image (a highlighted re-
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(a) Sketch

(b) Reference (c) Synthesized image

Figure 7: Visualization of our attention mechanism.

gion in (b)). Based on this attention pattern, our model prop-
erly colorizes the left eye of a person in a sketch image (¢)
with blue color. For additional examples of visualizing at-
tention maps for different sketch and reference images, we
strongly encourage the readers to check out the Fig. 14 in
the supplementary material for details.

Colorization Quality and Realism Detailed Reflection of Reference

|

112] do1 096 | 1121 [Gios 091
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Figure 8: User study results. Percentage values are averaged
over every datasets we experimented. Individual results are
presented in Section 6.2 in supplementary material.

5. Conclusions

This paper presents a novel training scheme, integrat-
ing the augmented-self reference and the attention-based
feature transfer module to directly learn the semantic cor-
respondence for the reference-based sketch colorization
task. Evaluation results demonstrate that our SCFT mod-
ule exhibits the state-of-the-art performance over the di-
verse datasets, which demonstrates the significant potentials
in practice. Finally, SC-PSNR, a proposed evaluation met-
ric, effectively measures how the model faithfully reflects
the style of the exemplar.
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A. Supplementary Material

This supplementary document presents additional details of
the paper. Section A.1 discusses the effects of our spatially cor-
responding feature transfer mechanism with quantitative results.
Section A.2 demonstrates the human evaluation results that com-
pare ours against baseline methods. Afterwards, Section A.3 re-
ports implementation details including network architectures, the
processes of generating augmented-self reference images, and
other training details. Comparisons to an existing study which
shares similar network architectures are described in Section A 4.
Lastly, Section A.5 addresses the case where a reference image
does not exist. Qualitative results generated by our method are also
shown throughout the document.

A.1. Effects of Aggregation Methods

The key assumption behind SCFT is that integrating spatially
aligned reference features with content features would help reflect
the exact color from the reference into corresponding positions.
To prove this assumption, we compare our SCFT with two simple
types of aggregation methods as shown in Fig. 9. Methods are as
follows: (a) representations of the reference are simply added to
the features of the content. (b) AdaIN [12] is utilized to transfer the
style of reference by aligning the channel-wise mean and variance
of content to match those of reference. (c¢) our SCFT module.

Qualitative comparison over three methods is shown in Fig. 10.
The leftmost column contains sketch and reference, while next
three columns contain colorized images from (a), (b) and (c), re-
spectively. Method (a) tends not to perfectly locate the correspond-
ing regions and results in colorizing car with overly yellowish
color, which is mainly background color in the exemplar. Method
(b) totally ignores the spatially varying color information, thus col-
orizing with dominant color from the reference. (c) is superior to
other methods in terms of color transferability to the correspond-

ing position.
rlw pi

L

|—;—| IWkI

>«
AdalN v
Q¢
v
l c c $c
(a) Additon (b) AdalN (c) Ours

Figure 9: Diagram of three types of aggregation methods.
(a) Addition block, (b) AdalIN [12] block, (¢) Ours (SCFT)

Quantitative results comparing these methods are represented
in Table 4. The network with SCFT module produces the most
realistic results over most of the datasets. This is because the SCFT
module properly aligns the corresponding local regions between
the sketch and the reference image by using the attention matrix
A. On the other hand, the method (a) and (b) are not capable of
aligning the local features of the reference with those of the sketch,
resulting in low FID scores.

In Yumi’s Cells [32] dataset, however, the SCFT module pro-
duced worse FID score than the others. The potential reason we
assume is that the sketch and the reference we randomly pair for
the inference time often contain different types of objects, e.g.,
Yumi (a human) and cells (non-human), which may have nega-
tively impacted the colorization output.

Content /
Reference

(a) Addition (b) AdaIN (c) Ours (SCFT)

Figure 10: A qualitative example obtained from three dif-
ferent aggregation methods as shown in Figure 9.

A.2. User Study

We conduct two different human evaluation on the colorization
outputs over various datasets. First, we randomly select ten sets
of images per dataset, which contain the generated images from
our method and other baselines. Second, we also randomly select
ten sets of images for every dataset, and those contain the images
obtained from the model trained with triplet loss, L1-loss and no
supervision for correspondence, respectively. For both cases, par-
ticipants with no prior knowledge in this work are asked to rank
them in terms of two types of questions sequentially as follows:

¢ Overall Colorization Quality and Realism

How natural does the colorized image look? This question re-
quires users to evaluate the overall quality of the generated col-
orization given an input sketch. The generated image should
be perceptually realistic without any artifacts or color bleeding
across sketches.

o Detailed Reflection of Reference

How well is the colors of the reference image is reflected to a
given sketch part by part? This question asks users to determine
whether the particular color from a reference is injected into
the corresponding regions in the sketch. For example, given an
comics character image with green hair wearing a blue shirt as
a reference, the generated output is expected to contain these
colors at its corresponding hair and clothing part, respectively.

As seen in Fig. 23 and 24, superior measures indicate that our
approach generates both more realistic and more faithfully col-
orized image than other methods. For both question type 1 and
2, it can be observed that our approach achieves the rank 1 vot-
ings more than 50% over all the dataset we adopt for user study.
‘When asked the first question on Comics domain dataset including
Tag2pix [1%] and Yumi’s Cell [32], Style2Paints [28] perform real-
istic generation quality comparable to our method with a small gap
in top 1 rate. This notable measure is obtained as Style2Paints [28]
is a adept baseline especially on comic domain. However, the dif-
ference in top 1 rate increases as the users are asked to choose
based on faithful colorization performance. The results demon-
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ImageNet Human Face Comics Hand-drawn
Aggregation Method || Cat | Dog | Car CelebA Tag2pix | Yumi’s Cells | Edges2Shoes
(a) Addition 78.47 | 103.73 | 55.80 51.94 47.72 47.67 117.15
(b) AdaIN 75.17 | 105.72 | 52.85 50.61 52.81 45.36 88.46
(¢) SCFT (ours) 74.12 | 102.83 | 52.23 47.15 45.34 49.29 78.32

Table 4: FID scores [1 1] according to different aggregation methods.

strate that our model utilizes the right color from the reference,
which results in both realistic and exquisitely colorized output.
The results in Fig. 25 demonstrates that the model trained with
triplet loss obtains more realistic and faithfully colorized outputs
than with L;-loss or no loss. Furthermore, along with the expla-
nation of similarity-based ftriplet loss in Section 3.4 of the paper,
these results support that the supervision for semantic correspon-
dence with the L;-loss leads to the inferior colorization perfor-
mance even compared to the model without any supervision.

A.3. Implementation Details

This section provides the implementation details of our model,
complementary to Section 3.5 of the paper.
Augmented-Self Reference Generation To automatically gen-
erate a sketch image from an original color image, We utilize a
widely-used algorithm called XDoG [42]. The outputs, however,
often involves superfluous edges, so in order to suppress them, we
apply Gaussian blurring (o = 0.7) to the original images before
extracting sketches. The appearance transformation a(-) adds ran-
domly sampled value from a uniform distribution on [-50, 50] to
each of the RGB channels of the original image.
Encoder Our generator GG contains two types of encoder, F, and
E.,.. Both of them share the same architecture shown in Table 5,
except for the number of input channels of the first layer, where
E; takes a single-channel, binarized sketch input while E,. takes
a three-channel, RGB reference image. We utilize the an average
pooling function for downsampling ¢ in Section 3.3 of the paper.

Layer | Encoder
L1 Conv(I:C,0:16,K:3,P:1,S:1), Leaky Rel.U:0.2
L2 Conv(1:16,0:16,K:3,P:1,S:1), Leaky Rel.U:0.2
L3 Conv(I:16,0:32,K:3,P:1,S:2), Leaky Rel.U:0.2
14 Conv(1:32,0:32,K:3,P:1,S:1), Leaky ReL.U:0.2
L5 Conv(1:32,0:64,K:3,P:1,S:2), Leaky Rel.U:0.2
L6 Conv(I:64,0:64,K:3,P:1,S:1), Leaky Rel.U:(.2
L7 Conv(1:64,0:128,K:3,P:1,S:2), Leaky Rel.U:0.2
L8 Conv(1:128,0:128,K:3,P:1,S:1), Leaky Re.U:0.2
L9 Conv(I:128,0:256,K:3,P:1,S:2), Leaky Rel.U:0.2
L10 | Conv(I1:256,0:256,K:3,P:1,S:1), Leaky Rel.U:0.2

Table 5: The network architecture of Encoder . Conv de-
notes a convolutional layer. I, O, K, P, and S denote the
number of input channels, the number of output channels,
a kernel size, a padding size, and a stride size, respectively.
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Resblocks We place four stacked residual blocks [9] with a kernel
size of 3 and a stride of 1. Batch normalization [ 14] follows each
convolutional block, and ReLU is used as the activation function.
Discriminator We adopt our discriminator architecture as Patch-
GAN [15]. We utilize the LSGAN [30] objective for the stable
training.

Training Details For all the experiments, our network is trained
using Adam optimizer [19] with 81 = 0.5 and f2 = 0.999. We
set an initial learning rate for the generator as 0.0001 and that for
the discriminator as 0.0002. We train the model for the first 100
epochs using the same learning rate, and then we linearly decay
it to zero until the 200 epochs. We set the margin value v = 12
for our triplet loss (Eq. 5 in the paper). The batch size is set as
16. The parameters of all our models are initialized according to
the normal distribution which has a mean as 0.0 and a standard
deviation as 0.02.

Baselines We exploit Sun [40] and Style2Paints [28] as the sketch
image colorization methods, Huang [2018] [13], and Lee [24] as
the image translation methods and Huang [2017] [12] as the style
transfer method as our baselines. For Style2Paints [2%], we gener-
ate the images based on the publicly available Style2Paints V3 in a
similar manner to Tag2pix [18]. For the other methods, we utilize
the officially available codes to colorize images after training them
on our datasets.

Source

(b)

Figure 11: Qualitative results of our Zhang ef al. [47] given
gray-scale source image (row (a)) and sketch image (row
(b)). In contrast to the output in the row (a), output in (b)
fails to colorize the eyes with the color from the reference
and spreads the yellow color over the face.
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A.4. Comparison to Zhang eral. (2019) [47].

In this section, we discuss the detailed comparison between our

method and Zhang et al.. These two works have similarity in that
they both exploit geometric distortion for data augmentation and
semantic correspondence module for color guidance. However the
significant difference of our model against Zhang et al. lies in (1)
direct supervision of semantic correspondence and (2) generalized
attention module.
Direct supervision Our model directly supervises the attention
module via a triplet loss, which enables the optimization of the
attention module in an end-to-end manner. This fully trainable en-
coder encourages to generate plausible results over a wide range
of datasets from real-world photos to comic images, as show in
Fig. 4 of the paper and Fig. 17. In contrast, Zhang et al. requires
a pre-trained, already reliable attention module, which is only in-
directly supervised via a so-called contextual loss. According to
Geirhos er al. (2019) [5], the features extracted from the Ima-
geNet pre-trained encoder may be severely degraded for a sketch
image due to large domain shifts. In this sense, Zhang er al.’s work
may not be easily applicable to sketch image colorization tasks,
and the examples of failure case are shown in Fig. 11. We reimple-
mented the code of Zhang ez al., trained and tested the model over
cat dataset. As this baseline exploits the ImageNet pre-trained en-
coder, row (a) shows that it produces the plausible colorized output
given gray-scale source image. However, when given information
scarce sketch image (row (b)), it fails to obtain the dense corre-
spondence with the reference image, resulting in degraded output.
Generalized attention module Inspired by the self-attention
module in the Transformer networks, our attention module in-
volves different query, key, and value mappings for flexibility,
while Zhang er al. use a relatively simple module. More impor-
tantly, in terms of value vectors, Zhang ez al. uses only raw color
values, but ours uses all the available low- to high- level semantic
information extracted from multiple layers. In this respect, ours is
capable of transferring significantly richer contextual information
than just low-level color information.

A.5. Colorization without reference.

Our main scope is focused on the colorization task with a ref-
erence available, but we can easily extend our method for no-
reference cases by occasionally providing a zero-filled image as
a reference to the networks during the training time. We feed the
zero-filled image to our model as a reference with a ratio of 9:1
at the training time. As shown in Fig. 12, we confirm that our net-
work still generates a reasonable quality of colorization output at
test time. In this case, the zero-filled reference image does not have
any information to guide. Therefore, the model is encouraged to
synthesize an output image with colors that often appear in train-
set conditioned on the sketch image. We recall that the main goal
of this work is not restricted to generating the original image.

Sketch Reference Output

Original

Figure 12: A qualitative example when there is no reference
image. Our model takes the first column image (sketch) as a
target and the second column image (zero-filled reference)
to synthesize the third column image (output). The results
of first row, second-to-third rows, last row are obtained from
our model trained for Yumi’s Cells [32], Tag2pix [18], and
CelebA [27], respectively.
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Sketch

Figure 14: Qualitative results of our method on the Tag2pix [ 18] dataset.
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Figure 16: Qualitative results of our method on the ImageNet [30] dataset.
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Figure 17: Qualitative comparisons with the baselines on the Tag2pix dataset.
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Figure 18: Qualitative results of our method on the Edges—Shoes dataset.
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Figure 19: Qualitative comparisons with baselines on the CelebA dataset.
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Figure 20: Qualitative comparisons with baselines on the ImageNet [36] dataset.
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Figure 21: Qualitative comparisons with baselines on the Yumi’s Cells [32] dataset.
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Figure 22: The visualization of attention maps on CelebA and Tag2pix dataset. The colored squares on the second column
indicate the query region and corresponding key regions are highlighted in the next four columns. The different color of
square means the different query region, and each red, blue, yellow, and green corresponds with the column (a), (b), (¢), and
(d), respectively.
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Figure 23: The results of the user study for comparison between our model and existing baselines. Question type 1: Overall

Colorization Quality and Realism.
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Figure 24: The results of the user study for comparison between our model and existing baselines. Question type 2: Detailed
Reflection of Reference.
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Figure 25: The results of the user study for comparison between model with triplet loss, L1-loss and no loss. The percentages

are averaged over all the datasets.
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