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ABSTRACT

We present a scalable approach for semi-supervised learning on graph-structured
data that 1s based on an efficient variant of convolutional neural networks which
operate directly on graphs. We motivate the choice of our convolutional archi-
tecture via a localized first-order approximation of spectral graph convolutions.
Our model scales linearly in the number of graph edges and learns hidden layer
representations that encode both local graph structure and features of nodes. In
a number of experiments on citation networks and on a knowledge graph dataset
we demonstrate that our approach outperforms related methods by a significant
margin.
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Objective of semi-supervised learning

+ Exploit the properties of unlabeled data to better understand the population structure
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Categorization of semi-supervised learning

[ Transductive learning ] [ Inductive learning ]

Semi-supervised learning ]

[ Generative ][ Graph-based ][ Co-trainin ]
models methods ?




——e |Introduction

Categorization of semi-supervised learning

+ Transductive learning aims to infer the correct labels for given unlabeled data only

+ Inductive learning learns the correct mapping from features to class labels
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Graph-based semi-supervised learning

+ Utilize the graph representation of data, where labeled and unlabeled instances are
represented as vertices, and edges encode the similarity between instances
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Graph-based semi-supervised learning

Graph construction

Edge generation ] ~ Weight estimation
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Inference ]
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Convolutional neural networks
+ Localized convolutional filters recognize identical features independently of their

spatial locations

Deubt thou the stars are fire,
Uoubt that the sun doth move,
Deubt truth $o be a liar,
But never doubt I love...

Text

Social networks Regulatory networks

Audio signals

Functional networks 3D shapes
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What geometric structure of images, speech,
video, and text is exploited by CNNs?

How to leverage such structure on
non-Euclidean domains?
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Graph convolution
+ Extension of spatial convolutional neural networks to graph-structured data

+ Spectral graph convolutions can be approximated via a localized first-order
approximation®
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Graph convolution

« An undirected graph G(V,E) is given, where each vertex corresponds to a instance
and each edge weights encode the similarities between instances.

+ A graph convolutional layer* is defined as follows:
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Graph convolution

/7

+ In a semi-supervised classification setting, the graph convolutional network is trained
to minimize the categorical cross-entropy loss over only the labeled data
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Graph convolution for SSL
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Datasets
Table 1: Dataset statistics, as reported in |Yang et al.|(2016).
Dataset Type Nodes Edges Classes Features Label rate
Citeseer  Citation network 3,327 4,732 6 3,703 0.036
Cora Citation network 2,708 5,429 7 1,433 0.052
Pubmed Citation network 19,717 44,338 3 500 0.003

NELL Knowledge graph 65,755 266,144 210 5,414 0.001
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Comparison with other graph SSL algorithms

Table 2: Summary of results in terms of classification accuracy (in percent).

Method Citeseer Cora Pubmed NELL
ManiReg [3] 60.1 59.5 70.7 21.8
SemiEmb [28] 59.6 59.0 71.1 26.7

LP [32] 45.3 68.0 63.0 26.5
DeepWalk [22] 43.2 67.2 65.3 58.1

ICA [18] 69.1 75.1 73.9 23.1
Planetoid* [29] 64.7 (26s) 75.7(13s) 77.2(25s) 61.9 (185s)
GOCN (this paper) 70.3 (7s) 81.5 (4s) 79.0 (38s) 66.0 (48s)
GCN (rand. splits) 67.94+0.5 80.1+0.5 789+£0.7 584+£1.7
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Comparison of propagation models

Table 3: Comparison of propagation models.

Description Propagation model Citeseer Cora Pubmed

i . K =3 69.8  79.5 74.4
Chebyshev filter (Bq.|5) - —5 3y Tu(L) X O 69.6  S81.2 73.8
18-order model (Eq. XOg + D‘if’lD_%XC—)l 68.3  80.0 77.5
Single parameter (Eq. (In + D_f:rlD_l 1 X 69.3  79.2 77.4
Renormalization trick (Eq. |§P D 2AD zX0O 70.3 81.5 79.0
1%-order term only D 32AD- X6 68.7  R80.5 77.8
Multi-layer perceptron X6 46.5  55.1 71.4
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Model depth with skip connections
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+ A new neural network model which operates directly on graphs, motivated from a first
order approximation of spectral graph convolutions

+ Outperforms other graph-based SSL methods by a significant margin
+» Geometric Deep Learning on Graphs and Manifolds, NIPS 2017 tutorial, video
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https://www.youtube.com/watch?v=LvmjbXZyoP0
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