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Seq2seq
Basics

The context vector is a compressed encoding of the input sequence.
( = thought vector )
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Seq2seq
Basics






http://docs.chainer.org/en/stable/examples/seq2seq.html



http://docs.chainer.org/en/stable/examples/seq2seq.html

Can the context vector
solely represent the whole 
input sequence effectively?
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Seq2seq with Attention
Basics (video)
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Seq2seq with Attention
Basics (image)



16

Seq2seq with Attention
Attention process (video)
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Seq2seq with Attention
Attention process (image)
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Seq2seq with Attention
Attention process (image)

How can we compute the 
score for each hidden state?
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Seq2seq with Attention
Attention scores (equations)

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025.
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Seq2seq with Attention
Attention process (video)
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Seq2seq with Attention
Attention process (image)
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ConvS2S
Gehring et al., Convolutional Sequence to Sequence Learning, 2017.

https://nlp.stanford.edu/seminar/details/mauli.pdf
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Neural Machine Translation
Performance comparisons

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
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Coreference Resolution
Example

The animal didn’t cross the street because it was too tired.

The animal didn’t cross the street because it was too wide.
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Transformer
Overview (GIF)
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Transformer
Motivations & properties

• Efficient parallelization

• Reduce sequential computation

• 𝒪𝒪 𝑛𝑛 , 𝒪𝒪 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 → 𝓞𝓞(𝟏𝟏)

• Self-attention 

• Encoder-decoder attention
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Transformer
Recap: encoder-decoder architecture



28

Transformer
Architecture (overview)
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Transformer
Architecture (encoder)
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Transformer
Architecture (encoder block)
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Transformer
Architecture (encoder block)
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Self-Attention
Step 1. Create 3 vectors (query, key, value) from each of the encoder’s input vectors.

𝑞𝑞𝑖𝑖 = 𝑊𝑊𝑄𝑄𝑥𝑥𝑖𝑖

𝑘𝑘𝑖𝑖 = 𝑊𝑊𝐾𝐾𝑥𝑥𝑖𝑖

𝑣𝑣𝑖𝑖 = 𝑊𝑊𝑉𝑉𝑥𝑥𝑖𝑖
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Self-Attention
Step 2. Calculate attention scores, for each word against all words in the sequence.
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Self-Attention
Step 3-4. Normalize the scores (divide with square root of dimension & apply softmax)
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Self-Attention
Step 5-6. Multiply each value vector with its score & sum up value vectors (only for multi-head)
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Self-Attention in Matrix Form
GPUs allow efficient parallelization of matrix multiplications 
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What’s missing from Self-Attention?
Comparisons

• Convolution: a different linear transformation for each relative position.

Allows you to distinguish what information came from where.

• Self-Attention: a weighted average 
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The Fix: Multi-Head Attention
More heads, more filters.

• Multiple attention layers (heads) in parallel (shown in different colors)

• Each head uses different linear transforms (Q, K, V)

• Different heads can learn different relationships



39

Multi-Head Attention
Maintain multiple sets of Q, K, V weight matrices
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Multi-Head Attention
Number of heads = 8 (default from paper)
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Multi-Head Attention
Concatenate & perform another linear transform
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Multi-Head Attention
Figure from paper
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Positional Encoding
Representing the order of the sequence

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the 
IEEE conference on computer vision and pattern recognition (pp. 2818-2826).
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Positional Encoding
Word embedding vector + positional encoding
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Encoder Wrap-Up
Architecture (overview)
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Transformer
Architecture (overview)
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Encoder-Decoder Attention
Use the output of the encoder as keys and values matrices (K, V) 
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Encoder-Decoder Attention
Use as query (Q), the query computed from decoder self-attention of the layer below it.
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Transformer
Architecture (encoder + decoder)

Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer normalization. arXiv preprint arXiv:1607.06450.
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Tricks for Training
Refer to paper

• Masking in decoder self-attention

• Learning rate scheduling

• Label Smoothing

• Beam Search

• …



52

Time Complexity of Self-Attention
Comparisons

In most cases,  𝒏𝒏 << 𝒅𝒅
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BLEU Scores & Training Costs
Higher the better
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Model Variations
Parameter tuning
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Coreference Resolution
Example

The animal didn’t cross the street because it was too ______.

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
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Attention Visualizations
Capturing long-range dependencies

It is in this spirit that a majority of American governments have passed new 
laws since 2009 making the registration or voting process more difficult.
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Attention Visualizations
Anaphora resolution (the problem of resolving what a pronoun, or a noun refers to)

The law will never be perfect, but its application should be just –
this is what we are missing, in my opinion.
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Attention Visualizations
Different attention heads learn different structural dependencies of the sentence

The law will never be perfect, but its application should be just –
this is what we are missing, in my opinion.
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Python Implementations
In both Tensorflow and Pytorch

• (Tensorflow) Tensor2Tensor library (github, jupyter notebook)

• (Pytorch) The Annotated Transformer (github, blog post)

https://github.com/tensorflow/tensor2tensor
https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://github.com/harvardnlp/annotated-transformer
http://nlp.seas.harvard.edu/2018/04/03/attention.html
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BERT
Devlin et al., BERT: Pre-training of Deep Bidirectional Transformers for Language 
Understanding, 2018



61

Summary
Key concepts

• RNN-based Seq2seq models suffer from the burden of sequential computation.

• The Transformer relies on an attention mechanism to draw global dependencies:

• input ↔ input (encoder self-attention)

• input ↔ output (encoder-decoder attention)

• output ↔ output (decoder self-attention)
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