The Transformer: Attention i1s All You Need

Hyungu Kahng
2019.11.23
@ DMQA Open Seminar

——e Contents

e Seq2seq
o Seq2seq with Attention

e Transformer

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit™*

Google Brain Google Brain Google Research Google Research

avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones* Aidan N. Gomez* | Lukasz Kaiser*
Google Research University of Toronto Google Brain
1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin*
illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.8 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature. We show that the Transformer generalizes well to
other tasks by applying it successfully to English constituency parsing both with
large and limited training data.

Output
Probabilities

t

| Softmax)
t
[Linear)
g ™
[Add & Norm Je=
Feed
Forward
s 1 ~ | Add & Norm e~
g Cie e Mult-Head
Feed Attention
Forward T 7 7 N x
—
Nix [Add & Norm Je=,
—{_Add & Norm | Maskod
Multi-Head Multi-Head
Attention Attention
t t
PLJsi_l onal @_@ A I’u:aitiqrml
Encoding : Encoding
Input QOutput
Embedding Embedding
Nputs Oulputs

(shifted night)

Figure 1: The Transformer - model architecture.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N, ... & Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information Processing Systems(pp. 5998-6008).

—e Seg2seq

Basics

—e Seg2seq

Basics

—e Seg2seq

Basics

—e Seg2seq

Basics

—e Seq2seq

Basics

O
o
=
o
m
>
<

The context vector is a compressed encoding of the input sequence.
(= thought vector)

l

—e Seg2seq

Basics

—e Seg2seq

Basics

h®

Encoder
Reccurent Layer

Encoder j .
Embedding Layer]

Ly

One-hot Vector

7=

<EOS>

One-hot Vector

R .

: 0 Decoder
S B o By BT J__Output Layer
h,[-t)
J
Decoder

Reccurent Layer

T P

E E_a' Decoder
oS Embedding Layer
<BOS> . o '=|»l:-:|mI '=-lu-|'fineI Yi—1
One-hot Vector
] = 1 2 3 4
Decoder

http://docs.chainer.org/en/stable/examples/seq2seq.html

Encoder

n®

Encoder
Reccurent Layer

Encoder jz

Embedding Layer

L

One-hot Vector
1 =

Can the context vector
solely represent the whole
Input sequence effectively?

http://docs.chainer.org/en/stable/examples/seq2seq.html

r e e
I © _) |
I o =l

i---i am---i flne---i <EQS> One-hot Vector

S SN, USSR, oo SRy R SR O o
J Output Layer
h(_t)

3

Decoder
Reccurent Layer

rg- Decoder
J Embedding Layer

One-hot Vector

—e Seg2seq with Attention

Basics (video)

14

—e Seq2seq with Attention

Basics (image)

| am a student

Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL WITH ATTENTION

Encoding Decoding

Attention Attention Attention Attention

Decoder Decoder Decoder Decoder
RNN RNN RNN RNN

Je suis étudiant

15

—e Seg2seq with Attention

Attention process (video)

16

—e Seq2seq with Attention

Attention process (image)

1. Prepare inputs

2. Score each hidden state

3. Softmax the scores

4. Multiply each vector by
its softmaxed score

5. Sum up the weighted
vectors

~---

Attention at time step 4

rﬂ--—.ﬂﬁﬂ—-h--—ﬂﬁﬂ--ﬂ-ﬂ-‘-hﬂﬂ--.ﬂ-——H--ﬁ---ﬂh

Tl " ™5
13 ! 9 | 9
0.96 | 0.02 | 0.02

Encoder Decoder hidden
hidden state at time step 4
states

scores

Attention weights for
decoder time step #4

softmax scores

Context vector for
decoder time step #4

17

—e Seq2seq with Attention

Attention process (image)

Attention at time step 4

',----------------------‘---.-------“---ﬂ-‘-hI

B i
Encoder i |

g : ! Decoder hidden

g 1. Prepareinputs hidden state at time step 4 §

. states "

B h+ h2 hs |
_ | scores . T

" J 2. Score each hidden state 13 1 9 | 9 | Attention weights for

' decoder time step #4 |

B |

3. Softmaxthe scores 0.96 | 0.02 | 0.02 | softmax scores .

y

i

} 4-Multiply each vector by How can we compute the

. its softmaxed score + +

: score for each hidden state?

[=

|

" 5.5um up the weighted Context vector for :

: vectors decoder time step #4 .

% e o e e mm e o mm o M e o e e o m m o mm o ’

18

—e Seg2seq with Attention

Attention scores (equations)

Je suis étudiant </s>
R T |
attention

vector
context
vector —
exp (score(h;, h _
attention 21" % Qis = —5 b ((P, S)E Attention weights] (1)
wow 0SS >0, exp (score(hy, o))
» c; = Z ayshg Context vector] (2)
_ _ _ 8
S EEN EEN *»!‘!—! a; = f(c;, hy) = tanh(W,[cy; hy) Attention vector] (3)
I am > hilerirase ie sws .t.-i.-;;diant

_ {htTVVl_z8 [Luong’s multiplicative style] ()

score(h, hy)= 7
(hi, hs) v] tanh (Wyh, + Wh,) [Bahdanau’s additive style]

19
Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025.

—e Seg2seq with Attention

Attention process (video)

20

—e Seq2seq with Attention

Attention process (image)

Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL WITH ATTENTION

Encoding Stage Attention Decoding Stage

Attentions

21

—e COonvS2S
Gehring et al., Convolutional Sequence to Sequence Learning, 2017.

<p> They agree </s> <p>

Embeddings [H H —

. la maison de Lea <end>

Gated

Linear
Units % ?
h
Attention |

Dot products
¥ ¥
L [[[|
¥ r ¥ ¥
LT T T B 1T [T]
ﬁ -~
LLICLIL L]
\J v A 4
L H H H H H | I I
<p= <p= <s= Sie stimmen zu Sie stimmen zu <fs>

https://nlp.stanford.edu/seminar/details/mauli.pdf

—— Neural Machine Translation

Performance comparisons

English German Translation quality English French Translation Quality
B BLEU b B BLEU
GNMT (RNN) ConvS2S (CNN) SliceNet (CNN) Transformer GNMT (RNN) ConvS2S (CNN) Transtormer
BLEU scores (higher is better) of single models on the standard WMT newstest2014 English to German translation BLEU scores (higher is better) of single models on the standard WMT newstest2014 English to French translation
benchmark. benchmark.

23
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

——e Coreference Resolution

Example

Thelanimal

didn’t cross the street because

The animal didn’t cross the|street because

was too tired.

was too wide.

24

——e Transformer

Overview (GIF)

Output

Probabilities

t
| Softmax
t
[Linear
g ™)
[Add & Norm Je=
Feed
Forward
e 1 ~ | Add & Norm e~
gy =EE T Multi-Head
Feed Attention
Forward T 77 N x
—
Nix [Add & Norm Je=,
—{_Add & Norm | Maskod
Multi-Head Multi-Head
Attention Attention
t At
_ ﬁ
\ _ j
P[JHi-l onal @_E._) A Iluraitiqrml
Encoding : Encoding
Input QOutput
Embedding Embedding
Nputs Oulputs

(shifted night)

Figure 1: The Transformer - model architecture.

25

——e Transformer

Motivations & properties

 Efficient parallelization

e Reduce sequential computation

* O(n), O(logn) —

e Self-attention

e Encoder-decoder attention

Qutput

Probabilities
t
| Softmax)
1
[Linear)
s ~
| Add & Norm Je=
Feed
Forward
e 1 ~ | Add & Norm e~
> Add 8 Norm J Mult-Head
Feed Attention
Forward 7 7 J3 M x
|
Nix [Add & Norm Je=,
—>{_Add & Norrm J YR
Multi-Head Multi-Head
Attention Attention
At 4 k_“_)
— J -

Positional ®—O Fositional
. N +
Encoding Encoding

Input Output
Embedding Embedding

Nputs Oulputs
(shilted right)

Figure 1: The Transformer - model architecture.
26

——e Transformer

Recap: encoder-decoder architecture

{_]._JIP..JI[l am a Studcnt]

&

(f

ENCODERS

J

\S

-

DECODERS

\\

7

INPUT

Je

suis etudiant

——e Transformer

Architecture (overview)

OUTF‘UT[I am a student]

1

INPUT

1

ENCODER DECODER
))
2
ENCODER DECODER
r))
ENCODER DECODER
))
3
ENCODER DECODER
r))
ENCODER DECODER
)))
ENCODER DECODER

Suis étuthant]

28

——e Transformer

Architecture (encoder)

ENCODER

3

ENCODER

[}

ENCODER

3

ENCODER

ENCODER

4

4

ENCODER

Feed Forward

$

)

ENCODER

Self-Attention

INPUT

1

suis étudiant]

t

29

——e Transformer

Architecture (encoder block)

[ENCODER J
[

[ENCODER]
3

[ENCODER]
[}

[ENCODER J
L)

[ENCODER]
i

{ ENCODER]

(
(

ENCODER A A A

1 1 | \
Feed Forward]
Self-Attention]

3 3 ¥ J

1 | 1

x1 [x xa [N
Je suis étudiant

30

——e Transformer

Architecture (encoder block)

ENCODER #2 kk

T T
r+ [r- [

A A

ENCODER #1 f

Feed Forward Feed Forward
Neural Network Neural Network

zi [T 2T T
1 1

Self-Attention

\ A A

X1 EI:I:D x2|:|:|:|:|

Thinking Machines

——e Self-Attention

Step 1. Create 3 vectors (query, key, value) from each of the encoder’s input vectors.

Input Thinking Machines
Embedding T x: we ql — WQXl
Queries q1 D:l:l q2 D:l:]
Keys ki L] ke [T WK kl —_ Wle
Values V1 D:D V2 |:|:|]

wv Vi = WVXi

32

Input

Embedding

Queries

Keys

Values

Score

——e Self-Attention

Step 2. Calculate attention scores, for each word against all words in the sequence.

Thinking

x1 [
a [T

Machines

x> [
q. [T
ke [T
v. [T

q1'k2=

33

Input

Embedding

Queries

Keys

Values

Score

Divide by 8 (v/dj)

Softmax

——e Self-Attention

Step 3-4. Normalize the scores (divide with square root of dimension & apply softmax)

Thinking

x1 [
a [T

Machines

x> [
q. [T
ke [T
v. [T

q1'k2=

34

——e Self-Attention

Step 5-6. Multiply each value vector with its score & sum up value vectors (only for multi-head)

Input

Embedding
Queries

Keys

Values

Score

Divide by 8 (dy)
Softmax

Softmax
X
Value

Sum

Thinking

. [T
o [T

« [
v [

q1'k1=

vi [

2 [EIEE

Machines

x2 [T
q. [T

« [
v. O

q1'k2=

ENCODER #2 Kk

ENCODER #1

)

b

r: [r- [
Feed Forward Feed Forward
Neural Network Neural Network
z [z, [
I 1
[Self-Attention]
f f /
x [x2 [N
Thinking Machines

35

——e Self-Attention In Matrix Form

GPUs allow efficient parallelization of matrix multiplications

X wea Q Q T
Vv
softmax()
Vi
X
X Wwv V) QKT
Attention(Q, K, V) = softmax(———)V

36

— What’s missing from Self-Attention?

Comparisons

« Convolution: a different linear transformation for each relative position.

-> Allows you to distinguish what information came from where.

 Self-Attention: a weighted average ®

Convolution Self-Attention

S S e

37

—— The Fix: Multi-Head Attention

More heads, more filters.

e Multiple attention layers (heads) in parallel (shown in different colors)
« Each head uses different linear transforms (Q, K, V)

 Different heads can learn different relationships

Convolution Multi-Head Attention

LN L TS

—— Multi-Head Attention

Maintain multiple sets of Q, K, V weight matrices

X

Thinking
Machines
ATTENTION HEAD #0
Qo
W@
Vo
W,V

_01

ATTENTION HEAD #1

Vi

WqV

39

—— Multi-Head Attention

Number of heads = 8 (default from paper)

X
Thinking
Machines
Calculating attention separately in
eight different attention heads
\
ATTENTION ATTENTION ATTENTION
HEAD #0 HEAD #1 HEAD #7

MultiHead(Q, K, V) = Concatenate(head, ..., head;)W

head; = Attention(QWf, KWH, vw))

40

—— Multi-Head Attention

Concatenate & perform another linear transform

1) Concatenate all the attention heads 2) Multiply with a weight
matrix that was trained
jointly with the model

X

3) The result would be the ~ matrix that captures information
from all the attention heads. We can send this forward to the FFNN

41

—e Multi-Head Attention
Figure from paper

Ecaled Dot-Product

Attention

Scaled Dot-Product I

Attention

[Concat

42

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention
input sentence* each word* We multiply X or using the resulting
R with weight matrices Q/K/V matrices

W@
e X WK
Thinking e v
Machines Wo
w;Q
* In all encoders other than #0, W1 K
we don't need embedding. W,V
We start directly with the output E
of the encoder right below this one '
R el sea
T i}
WK
- W7V

5) Concatenate the resulting ~ matrices,
then multiply with weight matrix " to
produce the output of the layer

Wo

. 1
.
2

— Positional Encoding

Representing the order of the sequence

1.00

0.75 A

. pDS 0.50 -
PEpos i) = sty 500 007ae) o=
pDS —0.25 A

) —0.50 +

100002/ dimodel

—1.00 -

PE (105 2i+1) = cos(

o] 20 40 60 80 100

POSITIONAL 1 1 0.84 Quuiek 1 (1R:h B 0.0002 | -0.42 1
ENCODING
+ + +
EMBEDDINGS X1 X2 X3
INPUT Je SUis étudiant

Szegedy, C., Vanhoucke, V., loffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the
IEEE conference on computer vision and pattern recognition (pp. 2818-2826).

— Positional Encoding

Word embedding vector + positional encoding

(

ENCODER #1

1

(

ENCODER #0

DECODER #0

' ' ' DECODER #1

_

]

EMBEDDING
WITH TIME
SIGNAL

POSITIONAL
ENCODING

EMBEDDINGS

INPUT

x LT
v O
. [

Je

e[T [1]

LT 1]

+

x. [T

suis

x T

ts |

+

Jumme

étudiant

pos

PE(st,Q-i} = SiIl(

PE(pr:rs,E-i+1) = CDS(

100002 dreir

pos

100002/ dimodel

)

45

—— Encoder Wrap-Up

Architecture (overview)

2 2
(-b(Add & Normalize

D)

)

N) 1
i . (Feed Forward) (Feed Forward)
Q| ~=omzm=-- 4------cccmiiemee-- 4
-] .
Z I,-b(x Add & Normalize .
. (Self-Attention

POSITIONAL
ENCODING

X1 | X2

Thinking Machines

ENCODER #1

O

F

X
-b-[LayerNorm(+

*(Add & Normalize) \

] X)
E (Feed Forward) (Feed Forward)
214*22*

4 Add & Normalize

A A

D:‘:D [E*]:l

(Self-Attention)
A A
POSITIONAL é é
ENCODING
X1 LT T[] lejjjj
Thinking Machines

46

——e Transformer

Architecture (overview)

OUTF‘UT[I am a student]

1

INPUT

1

ENCODER DECODER
))
2
ENCODER DECODER
r))
ENCODER DECODER
))
3
ENCODER DECODER
r))
ENCODER DECODER
)))
ENCODER DECODER

Suis étuthant]

47

—— Encoder-Decoder Attention

Use the output of the encoder as keys and values matrices (K, V)

Decoding time step:@Z 3456

EMBEDDING
WITH TIME
SIGNAL

EMBEDDINGS

INPUT

f

C

Linear + Softmax

T

ENCODER DECODER
w '
4 4
3 a
ENCODER DECODER
», .
CIT1] [CC OO
HEEN LLTT] LITT]
Je suis étudiant

48

—— Encoder-Decoder Attention

Use as query (Q), the query computed from decoder self-attention of the layer below it.

Decoding time step: 1@3 4 56 OUTPUT |
B N
(TT1] T s Kencdee Vencdec (Linear + Softmax)
{ N { T N
ENCODERS DECODERS
S / \)
EMBEDDING t U 4 4
WITHTIME LI T1 [OOITT] [LIT] [(TTT]
SIGNAL
EMBEDDINGS LIITT] (T 1T1] L1 [I1T11
INPUT Je suis étudiant PREVIOUS

OUTPUTS

——e Transformer

Architecture (encoder + decoder)

ENCODER #2

ENCODER #1

Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer normalization. arXiv preprint arXiv:1607.06450.

Add & Normalize

: A
' (Feed Forward) (Feed Forward
AP — - 4
'-p(Add & Normalize
[} [}

Self-Attention

POSITIONAL
ENCODING
x [x2 [

Thinking Machines

DECODER #1

Softmax)
3
Linear)
A
DECODER #2
i)
,*(Add & Normalize)

Add & Normalize)

/)

Encoder-Decoder Attention

)
Add & Normalize)
)

Self-Attention

50

—= Tricks for Training

Refer to paper

e Masking in decoder self-attention

Learning rate scheduling

Label Smoothing

Beam Search

51

— Time Complexity of Self-Attention

Comparisons

In most cases,

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations
for different layer types. n 1s the sequence length, d 1s the representation dimension. k 1s the kernel
size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n?-d) O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d*) O(1) O(log;.(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r

52

—— BLEU Scores & Training Costs

Higher the better

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

BLEU Training Cost (FLOPs)
Model EN-DE EN-FR EN-DE EN-FR
ByteNet [18] 3375
Deep-Att + PosUnk [39] 39.2 1.0-10%°
GNMT + RL [38] 24.6 39.92 2.3-10¥ 1.4.10%
ConvS2S [9] 25.16 4046 90.6-10° 1.5-102
MoE [32] 26.03 40.56 2.0-10"% 1.2.10%
Deep-Att + PosUnk Ensemble [39] 40.4 8.0-10%
GNMT + RL Ensemble [38] 26.30 41.16 1.8-10%° 1.1-102%!
ConvS2S Ensemble [O] 26.36 41.29 7.7-101% 1.2-10%
Transformer (base model) 27.3 38.1 3.3-1018

Transformer (big) 28.4 41.8 2.3.10%

Parameter tuning

—— Model Variations

Table 3: Variations on the Transformer architecture. Unlisted values are identical to those of the base
model. All metrics are on the English-to-German translation development set, newstest2013. Listed
perplexities are per-wordpiece, according to our byte-pair encoding, and should not be compared to

per-word perplexities.
nT _ train | PPL BLEU params
N dmndel Id]f h dk dzr Pcfmp €ls steps (de\;} (dev) % 106
base | 6 512 2048 8 64 o4 0.1 0.1 100K | 4.92 25.8 65
1 512 512 5.29 249
(A) 4 128 128 5.00 255
16 32 32 491 258
32 16 16 5.01 254
16 5.16 25.1 58
(B) 32 501 254 60
2 6.11 23.7 36
4 5.19 253 50
8 4.88 255 80
(C) 256 32 32 5.75 245 28
1024 128 128 4.66 26.0 168
1024 5.12 254 53
4096 475 26.2 90
0.0 577 24.6
0.2 4.95 255
D) 0.0 467 253
0.2 547 25.7
(E) positional embedding instead of sinusoids 4.92 25.7
big | 6 1024 4096 16 0.3 300K | 4.33 26.4 213

——e Coreference Resolution

Example

The animal didn’t cross the street because It was too

(4b] (b}
T g T g
= W T = W -
o E © @ » = " e E c o Q @
£ D O Qo £ L O
C._L.:_,_.m O}_ C._h_{:_,_.m
 © T O = © oM = =2 .,= © T O = » o=
2 2
o &l c 9 o 3 ” j=: o E c 0 o 3
5 £ o £ E =5 cH?

F T ©O = B O % = & & HF © T 0 - o =

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

was

was

too

too

wide

wide

55

Capturing long-range dependencies

——e Attention Visualizations

It is in this spirit that a majority of American governments have passed new

laws since 2009 making the registration or voting process more difficult.

<ped> <ped>
<ped> <ped>
<ped> <ped>
<ped> <peds
<ped> <ped>
<ped> <ped>
<S03> <S03>
Jnouyp anogel
alow alowl
ssao0.d ssaooud
Bunon Bunon
1o 1o
uonensibal uonessibal
ay} ay)
Bunjew Buryew
600< 600¢
20UIS a20uIs
sme| sme|
mau mau
passed pessed
aney aney
sjuswuianohb sjuawunob
uesLBWYy uesLaLwy
jo jo
Auolew Auolew
e e
ey} leyy
uads Wds
Siy} Siy}
ul ul
sl S|

H i

56

——e Attention Visualizations

Anaphora resolution (the problem of resolving what a pronoun, or a noun refers to)

The law will never be perfect, but its application should be just —
this I1s what we are missing, in my opinion.

The
Law
never
be
perfect
but

its
application
should
be
just
this

is
what
we

are
missing
in

my
opinion
<EOS>
<pad>

will

The
should
be
just
this

is
what
we
are

in

my
opinion

application
missing
<EOS>
<pad>

57

——e Attention Visualizations

Different attention heads learn different structural dependencies of the sentence

The law will never be perfect, but its application should be just —

this Is what we are missing, in my opinion.

<ped> <ped>

<803> / “803

uoluIdo = uoluido
Aw Aw
c_HHHHHHnnunuuummil|c_
Buissiw Buissiw
ale \ ale
am am
leym eym
siy} siy}
isnl isnl
oq \ s
pinoys = pinoys
uoneoldde uoneoldde
si \\ﬂ_
inq \Sn
joeped epad
oq \ mn_
lansu \1\ Jensu
(M 1M
Me \Bm._
ayL 8yl
<ped> <ped>
<S03> \AwOmv
uoludo =

Aw
ul

Buissiw Buissiw
ale ale
am am
1eym 1Jeym
s | s
Siy} siy}
SNl ysnl
aq i aq
pInoys pInoys
uoneoidde: uoneoldde
sH > “ S|
ing= nq
108pued 1o8aued
8q ., eq
Janau lanau
[11m [
ME] == S MET|
Syl Syl

58

—< Python Implementations

In both Tensorflow and Pytorch

* (Tensorflow) Tensor2Tensor library (github, jupyter notebook)

 (Pytorch) The Annotated Transformer (github, blog post)

59

https://github.com/tensorflow/tensor2tensor
https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://github.com/harvardnlp/annotated-transformer
http://nlp.seas.harvard.edu/2018/04/03/attention.html

— BERT

Devlin et al.,, BERT: Pre-training of Deep Bidirectional Transformers for Language

Understanding, 2018

BERT (QOurs) OpenAl GPT

e @

Figure 1: Differences in pre-training model architectures. BERT uses a bidirectional Transformer. OpenAl GPT
uses a left-to-right Transformer. ELMo uses the concatenation of independently trained left-to-right and right-
to-left LSTM to generate features for downstream tasks. Among three, only BERT representations are jointly
conditioned on both left and right context in all layers.

ou () ()) () ()) ())))

Token

Embeddings ‘E[CLS] ‘ Em',l ‘ Edog H Eis H Ecule E[SEP] ‘ Ehe ‘Elikes ‘Eplay | E*'=ing ‘ E[SEP]
L Ll = = L L Ll = o= L L

Segment

cbaangs | Ea || Ea || B |[B0 |[B][Ea || G| Eo |[Ee|[& |[& |
-+ -+ +* +*= -+ -+ -+ +*= +* + +

Position

cmoeaarss | Eo | (&][&][B J[B J[& J[& L& [& J[& J[Ew]

Figure 2: BERT input representation. The input embeddings is the sum of the token embeddings, the segmentation
embeddings and the position embeddings.

Class
Label
2
(&) =)z &)

BERT

[alle]~ [s]lem]le]- [a]
O

Sentence 1 Sentence 2

(a) Sentence Pair Classification Tasks:
MMNLI, QQP, QNLI, STS-B, MRPC,
RTE, SWAG

Start/End Span

CIC]- G- G
BERT

Cell=] [adleell=]- [a]

Question Paragraph

(c) Question Answering Tasks:
SQuAD v1.1

Single Sentence

(b) Single Sentence Classification Tasks:
SST-2, ColLA

Single Sentence

(d) Single Sentence Tagging Tasks:
CoNLL-2003 NER

Figure 3: Our task specific models are formed by incorporating BERT with one additional output layer, so a
minimal number of parameters need to be learned from scratch. Among the tasks, (a) and (b) are sequence-level
tasks while (c) and (d) are token-level tasks. In the figure, £ represents the input embedding, 7; represents the
contextual representation of token 7, [CLS] is the special symbol for classification output, and [SEP] is the special
symbol to separate non-consecutive token sequences.

60

—e Summary

Key concepts

 RNN-based Seq2seq models suffer from the burden of sequential computation.

* The Transformer relies on an attention mechanism to draw global dependencies:
e Input < Input (encoder self-attention)
* Input < output (encoder-decoder attention)

 output < output (decoder self-attention)

61

——o Reference

Papers, blog posts & videos

* Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information Processing
Systems (pp. 5998-6008).

e Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025.
e Gehring, J., Auli, M., Grangier, D., Yarats, D., & Dauphin, Y. N. (2017). Convolutional sequence to sequence learning. arXiv preprint arXiv:1705.03122.

» Szegedy, C., Vanhoucke, V., loffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on

computer vision and pattern recognition (pp. 2818-2826).
» Britz, D., Goldie, A., Luong, M. T., & Le, Q. (2017). Massive exploration of neural machine translation architectures. arXiv preprint arXiv:1703.03906.
 Ba,J. L, Kiros, J. R, & Hinton, G. E. (2016). Layer normalization. arXiv preprint arXiv:1607.06450.
* Press, O., & Wolf, L. (2016). Using the output embedding to improve language models. arXiv preprint arXiv:1608.05859.

e https://jalammar.qgithub.io/visualizing-neural-machine-translation-mechanics-of-seg2seq-models-with-attention/

e http://jalammar.github.io/illustrated-transformer/

e https://mchromiak.qgithub.io/articles/2017/Sep/12/Transformer-Attention-is-all-you-need/#.W aFTFxR1jU

e https://www.mihaileric.com/posts/transformers-attention-in-disquise/

e https://www.youtube.com/watch?v=rBCgOTEfxvg

62

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
http://jalammar.github.io/illustrated-transformer/
https://mchromiak.github.io/articles/2017/Sep/12/Transformer-Attention-is-all-you-need/#.W_aFTFxR1jU
https://www.mihaileric.com/posts/transformers-attention-in-disguise/
https://www.youtube.com/watch?v=rBCqOTEfxvg

	�The Transformer: Attention is All You Need
	Contents
	슬라이드 번호 3
	Seq2seq
	Seq2seq
	Seq2seq
	Seq2seq
	Seq2seq
	슬라이드 번호 9
	Seq2seq
	Seq2seq
	슬라이드 번호 12
	슬라이드 번호 13
	Seq2seq with Attention
	Seq2seq with Attention
	Seq2seq with Attention
	Seq2seq with Attention
	Seq2seq with Attention
	Seq2seq with Attention
	Seq2seq with Attention
	Seq2seq with Attention
	ConvS2S
	Neural Machine Translation
	Coreference Resolution
	Transformer
	Transformer
	Transformer
	Transformer
	Transformer
	Transformer
	Transformer
	Self-Attention
	Self-Attention
	Self-Attention
	Self-Attention
	Self-Attention in Matrix Form
	What’s missing from Self-Attention?
	The Fix: Multi-Head Attention
	Multi-Head Attention
	Multi-Head Attention
	Multi-Head Attention
	Multi-Head Attention
	슬라이드 번호 43
	Positional Encoding
	Positional Encoding
	Encoder Wrap-Up
	Transformer
	Encoder-Decoder Attention
	Encoder-Decoder Attention
	Transformer
	Tricks for Training
	Time Complexity of Self-Attention
	BLEU Scores & Training Costs
	Model Variations
	Coreference Resolution
	Attention Visualizations
	Attention Visualizations
	Attention Visualizations
	Python Implementations
	BERT
	Summary
	Reference

