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Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.8 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature. We show that the Transformer generalizes well to
other tasks by applying it successfully to English constituency parsing both with
large and limited training data.
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Figure 1: The Transformer - model architecture.
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The context vector is a compressed encoding of the input sequence.
( = thought vector)
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—e Seg2seq with Attention

Basics (video)

14







—e Seq2seq with Attention

Basics (image)

| am a student

Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL WITH ATTENTION
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—e Seg2seq with Attention

Attention process (video)

16






—e Seq2seq with Attention

Attention process (image)

1. Prepare inputs

2. Score each hidden state

3. Softmax the scores

4. Multiply each vector by
its softmaxed score

5. Sum up the weighted
vectors

~-----------------------------------------

Attention at time step 4
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—e Seq2seq with Attention

Attention process (image)

Attention at time step 4
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—e Seg2seq with Attention

Attention scores (equations)
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Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025.



—e Seg2seq with Attention

Attention process (video)
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—e Seq2seq with Attention

Attention process (image)

Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL WITH ATTENTION

Encoding Stage Attention Decoding Stage

Attentions
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—e COonvS2S
Gehring et al., Convolutional Sequence to Sequence Learning, 2017.
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—— Neural Machine Translation

Performance comparisons

English German Translation quality English French Translation Quality
B BLEU b B BLEU
GNMT (RNN) ConvS2S (CNN) SliceNet (CNN) Transformer GNMT (RNN) ConvS2S (CNN) Transtormer
BLEU scores (higher is better) of single models on the standard WMT newstest2014 English to German translation BLEU scores (higher is better) of single models on the standard WMT newstest2014 English to French translation
benchmark. benchmark.
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https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html



——e Coreference Resolution

Example

Thelanimal

didn’t cross the street because

The animal didn’t cross the|street because

was too tired.

was too wide.
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——e Transformer

Overview (GIF)
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Figure 1: The Transformer - model architecture.
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——e Transformer

Motivations & properties

 Efficient parallelization

e Reduce sequential computation

* O(n), O(logn) —

e Self-attention

e Encoder-decoder attention
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Figure 1: The Transformer - model architecture.
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——e Transformer

Recap: encoder-decoder architecture

{_]._JIP..JI[l am a Studcnt]

&

(f

ENCODERS

J

\S

-

DECODERS

\\

7

INPUT

Je

suis  etudiant



——e Transformer

Architecture (overview)
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——e Transformer

Architecture (encoder)
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——e Transformer

Architecture (encoder block)
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——e Transformer

Architecture (encoder block)
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——e Self-Attention

Step 1. Create 3 vectors (query, key, value) from each of the encoder’s input vectors.

Input Thinking Machines
Embedding T x: we ql — WQXl
Queries q1 D:l:l q2 D:l:]
Keys ki L] ke [T WK kl —_ Wle
Values V1 D:D V2 |:|:|]

wv Vi = WVXi
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——e Self-Attention

Step 2. Calculate attention scores, for each word against all words in the sequence.

Thinking

x1 [
a [T

Machines

x> [
q. [T
ke [T
v. [T

q1'k2=

33



Input

Embedding

Queries

Keys

Values

Score

Divide by 8 ( v/dj )

Softmax

——e Self-Attention

Step 3-4. Normalize the scores (divide with square root of dimension & apply softmax)
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——e Self-Attention

Step 5-6. Multiply each value vector with its score & sum up value vectors (only for multi-head)
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——e Self-Attention In Matrix Form

GPUs allow efficient parallelization of matrix multiplications

X wea Q Q T
Vv
softmax( )
Vi
X
X Wwv V ) QKT
Attention(Q, K, V) = softmax(———)V
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— What’s missing from Self-Attention?

Comparisons

« Convolution: a different linear transformation for each relative position.

-> Allows you to distinguish what information came from where.

 Self-Attention: a weighted average ®

Convolution Self-Attention

S S e
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—— The Fix: Multi-Head Attention

More heads, more filters.

e Multiple attention layers (heads) in parallel (shown in different colors)
« Each head uses different linear transforms (Q, K, V)

 Different heads can learn different relationships

Convolution Multi-Head Attention

LN L TS



—— Multi-Head Attention

Maintain multiple sets of Q, K, V weight matrices
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—— Multi-Head Attention

Number of heads = 8 (default from paper)

X
Thinking
Machines
Calculating attention separately in
eight different attention heads
\
ATTENTION ATTENTION ATTENTION
HEAD #0 HEAD #1 HEAD #7

MultiHead(Q, K, V) = Concatenate(head, ..., head; )W

head; = Attention(QWf, KWH, vw))
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—— Multi-Head Attention

Concatenate & perform another linear transform

1) Concatenate all the attention heads 2) Multiply with a weight
matrix that was trained
jointly with the model

X

3) The result would be the ~ matrix that captures information
from all the attention heads. We can send this forward to the FFNN

41



—e Multi-Head Attention
Figure from paper
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1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention
input sentence* each word* We multiply X or using the resulting
R with weight matrices  Q/K/V matrices
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— Positional Encoding

Representing the order of the sequence
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Szegedy, C., Vanhoucke, V., loffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the
IEEE conference on computer vision and pattern recognition (pp. 2818-2826).



— Positional Encoding

Word embedding vector + positional encoding
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—— Encoder Wrap-Up

Architecture (overview)
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——e Transformer

Architecture (overview)
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—— Encoder-Decoder Attention

Use the output of the encoder as keys and values matrices (K, V)

Decoding time step:@Z 3456
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—— Encoder-Decoder Attention

Use as query (Q), the query computed from decoder self-attention of the layer below it.
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——e Transformer

Architecture (encoder + decoder)

ENCODER #2

ENCODER #1

Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer normalization. arXiv preprint arXiv:1607.06450.
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—= Tricks for Training

Refer to paper

e Masking in decoder self-attention

Learning rate scheduling

Label Smoothing

Beam Search

51



— Time Complexity of Self-Attention

Comparisons

In most cases,

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations
for different layer types. n 1s the sequence length, d 1s the representation dimension. k 1s the kernel
size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type Complexity per Layer  Sequential Maximum Path Length
Operations

Self-Attention O(n?-d) O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d*) O(1) O(log;.(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r
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—— BLEU Scores & Training Costs

Higher the better

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

BLEU Training Cost (FLOPs)
Model EN-DE EN-FR EN-DE  EN-FR
ByteNet [18] 3375
Deep-Att + PosUnk [39] 39.2 1.0-10%°
GNMT + RL [38] 24.6 39.92 2.3-10¥ 1.4.10%
ConvS2S [9] 25.16 4046 90.6-10° 1.5-102
MoE [32] 26.03 40.56 2.0-10"%  1.2.10%
Deep-Att + PosUnk Ensemble [39] 40.4 8.0-10%
GNMT + RL Ensemble [38] 26.30 41.16 1.8-10%°  1.1-102%!
ConvS2S Ensemble [O] 26.36 41.29 7.7-101%  1.2-10%
Transformer (base model) 27.3 38.1 3.3-1018

Transformer (big) 28.4 41.8 2.3.10%




Parameter tuning

—— Model Variations

Table 3: Variations on the Transformer architecture. Unlisted values are identical to those of the base
model. All metrics are on the English-to-German translation development set, newstest2013. Listed
perplexities are per-wordpiece, according to our byte-pair encoding, and should not be compared to

per-word perplexities.
nT _ train | PPL  BLEU params
N dmndel Id]f h dk dzr Pcfmp €ls steps (de\;} (dev) % 106
base | 6 512 2048 8 64 o4 0.1 0.1 100K | 4.92 25.8 65
1 512 512 5.29 249
(A) 4 128 128 5.00 255
16 32 32 491 258
32 16 16 5.01 254
16 5.16 25.1 58
(B) 32 501 254 60
2 6.11 23.7 36
4 5.19 253 50
8 4.88 255 80
(C) 256 32 32 5.75 245 28
1024 128 128 4.66 26.0 168
1024 5.12 254 53
4096 475 26.2 90
0.0 577 24.6
0.2 4.95 255
D) 0.0 467 253
0.2 547 25.7
(E) positional embedding instead of sinusoids 4.92 25.7
big | 6 1024 4096 16 0.3 300K | 4.33 26.4 213




——e Coreference Resolution

Example

The animal didn’t cross the street because It was too
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Capturing long-range dependencies

——e Attention Visualizations

It is in this spirit that a majority of American governments have passed new

laws since 2009 making the registration or voting process more difficult.
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——e Attention Visualizations

Anaphora resolution (the problem of resolving what a pronoun, or a noun refers to)

The law will never be perfect, but its application should be just —
this I1s what we are missing, in my opinion.
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——e Attention Visualizations

Different attention heads learn different structural dependencies of the sentence

The law will never be perfect, but its application should be just —

this Is what we are missing, in my opinion.
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—< Python Implementations

In both Tensorflow and Pytorch

* (Tensorflow) Tensor2Tensor library (github, jupyter notebook)

 (Pytorch) The Annotated Transformer (github, blog post)

59


https://github.com/tensorflow/tensor2tensor
https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://github.com/harvardnlp/annotated-transformer
http://nlp.seas.harvard.edu/2018/04/03/attention.html

— BERT

Devlin et al.,, BERT: Pre-training of Deep Bidirectional Transformers for Language

Understanding, 2018

BERT (QOurs) OpenAl GPT

e @

Figure 1: Differences in pre-training model architectures. BERT uses a bidirectional Transformer. OpenAl GPT
uses a left-to-right Transformer. ELMo uses the concatenation of independently trained left-to-right and right-
to-left LSTM to generate features for downstream tasks. Among three, only BERT representations are jointly
conditioned on both left and right context in all layers.
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Figure 2: BERT input representation. The input embeddings is the sum of the token embeddings, the segmentation
embeddings and the position embeddings.
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Figure 3: Our task specific models are formed by incorporating BERT with one additional output layer, so a
minimal number of parameters need to be learned from scratch. Among the tasks, (a) and (b) are sequence-level
tasks while (c) and (d) are token-level tasks. In the figure, £ represents the input embedding, 7; represents the
contextual representation of token 7, [CLS] is the special symbol for classification output, and [SEP] is the special
symbol to separate non-consecutive token sequences.
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—e Summary

Key concepts

 RNN-based Seq2seq models suffer from the burden of sequential computation.

* The Transformer relies on an attention mechanism to draw global dependencies:
e Input < Input (encoder self-attention)
* Input < output (encoder-decoder attention)

 output < output (decoder self-attention)
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