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SEMI-SUPERVISED CLASSIFICATION WITH
GRAPH CONVOLUTIONAL NETWORKS

Thomas N. Kipf Max Welling
University of Amsterdam University of Amsterdam
T.N.KipfRuva.nl Canadian Institute for Advanced Research (CIFAR)

M.Welling@uva.nl

ABSTRACT

We present a scalable approach for semi-supervised learning on graph-structured
data that 1s based on an efficient variant of convolutional neural networks which
operate directly on graphs. We motivate the choice of our convolutional archi-
tecture via a localized first-order approximation of spectral graph convolutions.
Our model scales linearly in the number of graph edges and leamns hidden layer
representations that encode both local graph structure and features of nodes. In
a number of experiments on citation networks and on a knowledge graph dataset
we demonstrate that our approach outperforms related methods by a significant
margin.

Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.
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Inductive Representation Learning on Large Graphs

William L. Hamilton* Rex Ying”* Jure Leskovec

wleif@stanford.edu rexying@stanford.edu jure@cs.stanford.edu

Department of Computer Science
Stanford University
Stanford, CA, 94305

Abstract

Low-dimensional embeddings of nodes in large graphs have proved extremely
useful in a variety of prediction tasks, from content recommendation to identifying
protein functions. However, most existing approaches require that all nodes in the
graph are present during training of the embeddings; these previous approaches are
inherently rransductive and do not naturally generalize to unseen nodes. Here we
present GraphSAGE, a general inductive framework that leverages node feature
information (e.g., text attributes) to efficiently generate node embeddings for
previously unseen data. Instead of training individual embeddings for each node,
we learn a function that generates embeddings by sampling and aggregating features
from a node’s local neighborhood. Our algorithm outperforms strong baselines
on three inductive node-classification benchmarks: we classify the category of
unseen nodes in evolving information graphs based on citation and Reddit post
data, and we show that our algorithm generalizes to completely unseen graphs
using a multi-graph dataset of protein-protein interactions.

Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs. In Advances in Neural Information Processing
Systems (pp. 1024-1034).
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GRAPH ATTENTION NETWORKS

Petar Velickovic® Guillem Cucurull®
Department of Computer Science and Technology Centre de Visid per Computador, UAB
University of Cambridge gcucurull@gmail.com

petar.velickovicl@est.cam.ac.uk

Arantxa Casanova® Adriana Romero

Centre de Visio per Computador, UAB Montréal Institute for Learning Algorithms
ar.casanova.BEgmail.com adriana.romero.soriancfumontreal.ca
Pietro Lio Yoshua Bengio

Department of Computer Science and Technology ~ Montréal Institute for Learning Algorithms
University of Cambridge yoshua.umontreal@gmail. com

pietro.liclcst.cam.ac.uk

ABSTRACT

We present graph attention networks (GATs). novel neural network architectures
that operate on graph-structured data, leveraging masked self-attentional layers to
address the shortcomings of prior methods based on graph convolutions or their
approximations. By stacking layers in which nodes are able to attend over their
neighborhoods® features. we enable (implicitly) specifying different weights to
different nodes in a neighborhood, without requiring any kind of costly matrix op-
eration (such as inversion) or depending on knowing the graph structure upfront.
In this way, we address several key challenges of spectral-based graph neural net-
works simultaneously, and make our model readily applicable to inductive as well
as transductive problems. Our GAT models have achieved or matched state-of-the-
art results across four established transductive and inductive graph benchmarks:
the Cora, Cireseer and Pubmed citation network datasets, as well as a prorein-
protein interaction dataset (wherein test graphs remain unseen during training ).

Veli¢kovi¢, P., Cucurull, G., Casanova, A., Romero, A, Lio, P., & Bengio, Y. (2017). Graph attention networks. arXiv preprint arXiv:1710.10903.
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Hammond, D. K., Vandergheynst, P., & Gribonval, R. (2011). Wavelets on graphs via spectral graph theory. Applied and Computational Harmonic
Analysis, 30(2), 129-150.
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% Graph-level : graph classification
% Edge-level : edge classification and link prediction

* Node-level : node regression and classification
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Graph signal filtering
1. Convolution
2. Non-linear activation

Graph coarsening
3. Sub-sampling
4. Pooling

Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural networks on graphs with fast localized spectral filtering. In Advances in
neural information processing systems (pp. 3844-3852).
Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2019). A comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596.
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 Graph-based semi-supervised learning
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 Graph-based semi-supervised learning
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SEMI-SUPERVISED CLASSIFICATION WITH
GRAPH CONVOLUTIONAL NETWORKS

Thomas N. Kipf Max Welling

University of Amsterdam University of Amsterdam

Canadian Institute for Advanced Research (CIFAR)
M.Welling@uva.nl

ABSTRACT

We present a scalable approach for semi-supervised learning on graph-structured
data that is based on an efficient variant of convolutional neural networks which
operate directly on graphs. We motivate the choice of our convolutional archi-
tecture via a localized first-order approximation of spectral graph convolutions.
Our model scales linearly in the number of graph edges and learns hidden layer
representations that encode both local graph structure and features of nodes. In
a number of experiments on citation networks and on a knowledge graph dataset
we demonstrate that our approach outperforms related methods by a significant
margin.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2019). A comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596.
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Inductive Representation Learning on Large Graphs

William L. Hamilton* Rex Ying* Jure Leskovec

wleif@stanford.edu rexying@stanford.edu jure@cs.stanford.edu

Department of Computer Science
Stanford University
Stanford, CA, 94305

Abstract

Low-dimensional embeddings of nodes in large graphs have proved extremely
useful in a variety of prediction tasks, from content recommendation to identifying
protein functions. However, most existing approaches require that all nodes in the
graph are present during training of the embeddings; these previous approaches are
inherently rransductive and do not naturally generalize to unseen nodes. Here we
present GraphSAGE, a general inductive framework that leverages node feature
information (e.g., text attributes) to efficiently generate node embeddings for
previously unseen data. Instead of training individual embeddings for each node,
we learn a function that generates embeddings by sampling and aggregating features
from a node’s local neighborhood. Our algorithm outperforms strong baselines
on three inductive node-classification benchmarks: we classify the category of
unseen nodes in evolving information graphs based on citation and Reddit post
data, and we show that our algorithm generalizes to completely unseen graphs
using a multi-graph dataset of protein-protein i i

Transductive + Inductive

Published as a conference paper at ICLR 2018

GRAPH ATTENTION NETWORKS

Petar Velitkovic® Guillem Cucurull*

Department of Computer Science and Technology Centre de Visié per Computador, UAB
University of Cambridge geucurull@gmail.com
petar.velickov

Arantxa Casanova® Adriana Romero

Centre de Visié per Computador, UAB  Montréal Institute for Learning Algorithms
ar.casanova.B@gmail.com adriana.romero.sorianc@umontreal.ca
Pietro Lio Yoshua Bengio

Department of Computer Science and Technology  Montréal Institute for Learning Algorithms
University of Cambridge yeshua.umont real@gmail.com
pietro.lioc@iest.cam.ac.uk

ABSTRACT

We present graph attention networks (GATs), novel neural network architectures
that operate on graph-structured data, leveraging masked self-attentional layers to
address the shortcomings of prior methods based on graph convolutions or their
approximations. By stacking layers in which nodes are able to attend over their
neighborhoods” features, we enable (implicitly) specifying different weights to
different nodes in a neighborhood, without requiring any kind of castly matrix op-
eration (such as inversion) or depending on knowing the graph structure upfront
In this way, we address several key challenges of spectral-based graph neural net-
works simultaneously, and make our model readily applicable o inductive as well
as transductive problems. Our GAT models have achieved or matched state-of-the-
art results across four established transductive and inductive graph benchmarks
the Cora. Citeseer and Pubmed citation network datasets. as well as a profein-
protein inferaction dataset (wherein test graphs remain unseen during training),
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% Graph-level : graph classification
% Edge-level : edge classification and link prediction

% Node-level : node regression and classification

 Graph-based semi-supervised learning

Transductive Inductive
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. Graph Convolutional Networks

Convolutional layer

% Sparse connection
% Weight sharing

* Receptive field

Convolutional layer

Feature extractor

40x30
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. Graph Convolutional Networks

Convolutional layer

0

% Weight sharing

0

“ Receptive field

40x30
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. Graph Convolutional Networks

Convolutional layer

< Sparse connection layer m+|
% Weight sharing

“ Receptive field

Spatially-Local
Correlation
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. Graph Convolutional Networks

Convolutional layer

% Sparse connection
% Weight sharing

“ Receptive field

Spatially-Local
Correlation
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. Graph Convolutional Networks

Convolutional layer

< Sparse connection layer m+|
% Weight sharing layer m
* Receptive field

layer m-|
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. Graph Convolutional Networks

Convolutional layer

% Sparse connection
% Weight sharing

“ Receptive field
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. Graph Convolutional Networks

Convolutional layer

% Sparse connection
% Weight sharing

% Receptive field
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. Graph Convolutional Networks

Convolutional layer

% Sparse connection
% Weight sharing

“ Receptive field
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. Semi-supervised classification with GCN
Graph-based semi-supervised learning (Transductive)

31 ol
Published as a conference paper at ICLE 2017 1 4892' o

SEMI-SUPERVISED CLASSIFICATION WITH
GRAPH CONVOLUTIONAL NETWORKS

Thomas N. Kipf Max Welling
University of Amsterdam University of Amsterdam
T.N.KipfRuva.nl Canadian Institute for Advanced Research (CIFAR)

M.Welling@uva.nl

ABSTRACT

We present a scalable approach for semi-supervised learning on graph-structured
data that 1s based on an efficient variant of convolutional neural networks which
operate directly on graphs. We motivate the choice of our convolutional archi-
tecture via a localized first-order approximation of spectral graph convolutions.
Our model scales linearly in the number of graph edges and leamns hidden layer
representations that encode both local graph structure and features of nodes. In
a number of experiments on citation networks and on a knowledge graph dataset
we demonstrate that our approach outperforms related methods by a significant
margin.

Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.
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. Semi-supervised classification with GCN

Graph-based semi-supervised learning (Transductive)

Graph-based Semi-supervised Transductive
Unlabeled Class 1
Class 1 Unlabeled Class 1 Class 1
Class 2 Class 2
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. Semi-supervised classification with GCN

Graph-based semi-supervised learning (Transductive)

< 7|& X Sl Z " : graph-based regularization

s Graph Laplacian regularization term

Unlabeled Loss = Lossy + AL0OSSy.g,
e ° Lossy = supervised loss
with respect to the labeld part of the graph
2
Class1 S Lossreg = ). Ayl () —F()I = FROTLF)
Lj
Class 2
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. Semi-supervised classification with GCN

Graph-based semi-supervised learning (Transductive)
< 7|E X s Z 8 : graph-based regularization
s Graph Laplacian regularization term

Node — feature matrix
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. Semi-supervised classification with GCN

Graph-based semi-supervised learning (Transductive)

< 7|E X s Z 8 : graph-based regularization

s Graph Laplacian regularization term

Unlabeled

Class 1 Unlabeled

Class 2

Data Mining ., o
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. Semi-supervised classification with GCN

Graph-based semi-supervised learning (Transductive)

< 7|& X Sl Z " : graph-based regularization

s Graph Laplacian regularization term

Unlabeled Loss = Lossy + AL0SSy¢g,
° o Lossy = supervised loss
with respect to the labeld part of the graph
Unlabeled 2
Class 1 Lossreg = Y Agllf (X0 = F(0)I” = FCOTLFCH)
Class 2 "

X, f (X1) ----------- Class 1
Model
fX;w)

A, f(Xy) Class 2
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. Semi-supervised classification with GCN

Graph-based semi-supervised learning (Transductive)

< 7|E X s Z 8 : graph-based regularization

s Graph Laplacian regularization term

Loss = Lossy + AL0SSy¢g,

Unlabeled
° o Lossy = supervised loss
with respect to the labeld part of the graph
Unlabeled
Class 1 Lossreg = Ayllf () = F(X)I” = FOOTLFD)
Class 2 "
A, f(Xy) e Class 1
Xo Model f(X2)
X5 fX;w) f(X3)
X4 f(X4) """""" Class 2
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. Semi-supervised classification with GCN

Graph-based semi-supervised learning (Transductive)

N

< 7|E X s Z 8 : graph-based regularization

s Graph Laplacian regularization term

Loss = Lossy + AL0SSy¢g,

Unlabeled
@ Lossy = supervised loss
with respect to the labeld part of the graph
Unlabeled
Class 1 Lossreg = Ayllf () = F(X)I” = FOOTLFD)
Class 2 "
A, f(Xy) e Class 1
Xo Model f(X2)
A, f X w) f(X3)
X4 f(X4) """""" Class 2

Data Mining e, ey
Quality Analytics I'\.d

63
/107



. Semi-supervised classification with GCN

Graph-based semi-supervised learning (Transductive)

< 7|E X s Z 8 : graph-based regularization

s Graph Laplacian regularization term

Loss = Lossy + AL0SSy¢g,

Unlabeled
@ o Lossy = supervised loss
with respect to the labeld part of the graph
Unlabeled
Class 1 Lossreg = Ayllf () = F(X)I” = FOOTLFD)
Class 2 "
A, f(Xy) e Class 1
Xo Model f(X3)
X5 fX;w) f(X3)
X4 f(X4) """""" Class 2
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. Semi-supervised classification with GCN

Graph-based semi-supervised learning (Transductive)

< 7|= 2K s Z2 8 : graph-based regularization

s Graph Laplacian regularization term

718 . d&E = E= 8l0|=0] 2Lt

Edge”’t node similarityS 2|0|5tX| 2= Z 20 X< UAS
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. Semi-supervised classification with GCN

Graph-based semi-supervised learning (Transductive)
% AB™XO Z graph structure/t NNE2 20| &=

Z= f(X,A) = softmax(AReLU(AXW°)W1)

U U
Renormalization trick : A= D 2AD 2,A=(A+Iy)

F
Cross entropy Loss = — Z Z YirlnZys

Unlabeled _ '
Node — feature matrix Adjacency matrix

X E Ran A e Ran

o111
(3) (4) ToTeTs Model
1 ofo0 0
e fX, A W)
Class 1 Unlabeled
Class 2
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. Semi-supervised classification with GCN
Graph-based semi-supervised learning (Transductive)
% AB™XO Z graph structure/t NNE2 20| &=
Z= f(X,A) = softmax(AReLU(AXW°)W1)

U R
Renormalization trick : A= D 2AD 2,A=(A+Iy)

F
F: number of class Cross entropy Loss = — Z Z YigInZys

Y, : all labeled examples

ley, f=1
Unlabeled
Class 1 Unlabeled
Class 2
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. Semi-supervised classification with GCN
Graph-based semi-supervised learning (Transductive)
% AB™XO Z graph structure/t NNE2 20| &=

Z= f(X A= Softmax(/iReLU(/iXWO)Wl)

1

~ ~

Renormalization trick : A= D 2AD"2,A = (A +Iy)

F
F: number of class Cross entropy Loss = — Z Z YigInZys

Y, : all labeled examples

= —(an11 + an42)

Y, = Zy =
[Y11Y12] [Z11212]
L O—0@ HEO—0C
Y, = Zy =
[Ya1Yaz] [Z41242]
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. Semi-supervised classification with GCN

Graph-based semi-supervised learning (Transductive)
% AB™XO Z graph structure/t NNE2 20| &=

Z= f(X,A) = Softmax(/iReLU(/iXWO)Wl)

~

~_1
Renormalization trick : A= D 2

=
2
F
Cross entropy Loss = — Z Z YirlnZys
lEYL f=1

e s = Node Embedding

Z4-1242
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. Semi-supervised classification with GCN

Graph-based semi-supervised learning (Transductive)
& XE™EHOE graph structuret NNE2 2 0f| &=
Z= f(X,A) = softmax(AReLU(AXW°)W1)

1
2,A=(A+1y)

1 __
Renormalization trick : A= D 2AD

F
Cross entropy Loss = — Z Z YirlnZys
ley, f=1

ReLU(AXW?)
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. Semi-supervised classification with GCN

Graph-based semi-supervised learning (Transductive)
& XE™EHOE graph structuret NNE2 2 0f| &=
Z= f(X,A) = softmax(AReLU(AXW°)W1)

A=A+ 1y)

~_1___ 1
Renormalization trick : A= D 2AD 2

F
Cross entropy Loss = — Z Z YirlnZys
ley, f=1

° e 1|1 1 1
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. Semi-supervised classification with GCN
Graph-based semi-supervised learning (Transductive)
& XE™EHOE graph structuret NNE2 2 0f| &=
Z= f(X,A) = softmax(AReLU(AXW°)W1)

1
2,A=(A+1y)

1 __
Renormalization trick : A= D 2AD

F
Cross entropy Loss = — Z Z YirlnZys
ley, f=1

ReLU((A + I )XW?%)
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. Semi-supervised classification with GCN

.ﬁ

Graph-based semi-supervised learning (Transductive)

1
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HM O E graph structure7F NNE2 2 0f| &=

Z= f(X,A) = softmax(AReLU(AXW°)W1)
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. Semi-supervised classification with GCN

.ﬁ

Graph-based semi-supervised learning (Transductive)
< EIT™ZX O Z graph structuret NNZ 2 0f 2
Z= f(X,A) = softmax(AReLU(AXW°)W1)

U U
Renormalization trick : A= D 2AD 2,A=(A+Iy)

F
Cross entropy Loss = — Z Z YirlnZys
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. Semi-supervised classification with GCN

Graph-based semi-supervised learning (Transductive)
% AB™XO Z graph structure/t NNE2 20| &=
Z= f(X,A) = softmax(AReLU(AXW°)W?1)

1
2,A=(A+1y)

~_ 1 __
Renormalization trick : A= D 2AD

F
Cross entropy Loss = — Z Z YirlnZys
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. Semi-supervised classification with GCN
Graph-based semi-supervised learning (Transductive)
% AB™XO Z graph structure/t NNE2 20| &=
Z= f(X,A) = softmax(AReLU(AXW°)W1)

1
2,A=(A+1y)

1 __
Renormalization trick : A= D 2AD

F
Cross entropy Loss = — Z Z YirlnZys
(\ ley; f=1

Z= f(X,A) =softmax(AH, W)
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. Semi-supervised classification with GCN

Graph-based semi-supervised learning (Transductive)
% AB™XO Z graph structure/t NNE2 20| &=

Z= f(X,A) = softmax(AReLU(AXW°)W1)
1

~_1___
Renormalization trick : A= D 2

o 0 Sparse connection 0 a

© (4) Weight sharing (3)
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. Semi-supervised classification with GCN

Graph-based semi-supervised learning (Transductive)

N
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Qe |

HM O E graph structure7F NNE2 2 0f| &=
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. Semi-supervised classification with GCN

Graph-based semi-supervised learning (Transductive)

< HEX 2= graph structuret NNE 20| 1= Layer 1

Z= f(X A= softmax(4ReLU(/TXW°)|W1] Layer 2

Renormalization trick : A= D 2AD 2,A = (A+1Iy)

F
Cross entropy Loss = — Z Z YirlnZys
ley, f=1

Receptive field
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. Semi-supervised classification with GCN

Graph-based semi-supervised learning (Transductive)

Table 1: Dataset statistics, as reported in|Yang et al.|(2016).

Dataset Type Nodes Edges Classes Features Label rate
Citeseer  Citation network 3,327 4,732 6 3,703 0.036
Cora Citation network 2708 5.429 T 1.433 0.052
Pubmed  Citation network 19,717 44 338 3 500 0.003
NELL Knowledge graph 65,755 266,144 210 5414 0.001

Table 2: Summary of results in terms of classification accuracy (in percent).

Method Citeseer Cora Pubmed NELL
ManiReg [3] 60.1 59.5 70.7 21.8
SemiEmb [28] 59.6 59.0 71.1 26.7
LP 45.3 68.0 63.0 26.5
DeepWalk 43.2 67.2 65.3 58.1
ICA 69.1 75.1 73.9 23.1

Planetoid* [29] 64.7 (26s) T75.7(13s) 77.2(25s) 61.9(185s)
GCN (this paper) 70.3(7s) 81.5(ds) 79.0 (38s) 66.0 (48s)

GCN (rand. splits) 67.9£0.5 80105 78907 584x1.7
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. Inductive Representation Learning on Large Graphs

Graph-based semi-supervised learning (Inductive)
5642 218

Inductive Representation Learning on Large Graphs

William L. Hamilton* Rex Ying”* Jure Leskovec

wleif@stanford.edu rexying@stanford.edu jure@cs.stanford.edu

Department of Computer Science
Stanford University
Stanford, CA, 94305

Abstract

Low-dimensional embeddings of nodes in large graphs have proved extremely
useful in a variety of prediction tasks, from content recommendation to identifying
protein functions. However, most existing approaches require that all nodes in the
graph are present during training of the embeddings; these previous approaches are
inherently rransductive and do not naturally generalize to unseen nodes. Here we
present GraphSAGE, a general inductive framework that leverages node feature
information (e.g., text attributes) to efficiently generate node embeddings for
previously unseen data. Instead of training individual embeddings for each node,
we learn a function that generates embeddings by sampling and aggregating features
from a node’s local neighborhood. Our algorithm outperforms strong baselines
on three inductive node-classification benchmarks: we classify the category of
unseen nodes in evolving information graphs based on citation and Reddit post
data, and we show that our algorithm generalizes to completely unseen graphs
using a multi-graph dataset of protein-protein interactions.

Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs. In Advances in Neural Information Processing
Systems (pp. 1024-1034).
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. Inductive Representation Learning on Large Graphs
Graph-based semi-supervised learning (Inductive)

% Transductive 2t A ™ % — Inductive

% Full batch (memory on Large Graphs), Unseen Node, Completely Unseen graph

New papers

New posts on Reddit
New users

New Youtube videos
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. Inductive Representation Learning on Large Graphs
Graph-based semi-supervised learning (Inductive)

s GraphSAGE (SAmple and aggreGatE)
* Full batch — Mini batch
% Transductive — Inductive (Sampling)

s Average X — Aggregating (Mean / LSTM / Pooling aggregator)

~_____»|label

k=2 .o

1. Sample neighborhood 2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information
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. Inductive Representation Learning on Large Graphs
Graph-based semi-supervised learning (Inductive)

s GraphSAGE (SAmple and aggreGatE)
¢ Full batch — Mini batch

% Transductive — Inductive (Sampling)

s Average X — Aggregating (Mean / LSTM / Pooling aggregator)

Mini batch : 2, search depth: 1  _----- ommm el
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. Inductive Representation Learning on Large Graphs
Graph-based semi-supervised learning (Inductive)

s GraphSAGE (SAmple and aggreGatE)
¢ Full batch — Mini batch
% Transductive — Inductive (Sampling)

% Average X — Aggregating (Mean / LSTM / Pooling aggregator)

Mini batch : 2, search depth : 2 S K=1 ~K=2

-
-
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. Inductive Representation Learning on Large Graphs
Graph-based semi-supervised learning (Inductive)

s GraphSAGE (SAmple and aggreGatE)
< Full batch — Mini batch S1=3
% Transductive — Inductive (Sampling) Sz =

% Average X — Aggregating (Mean / LSTM / Pooling aggregator)

Mini batch : 2, search depth : 2 s K=1 ~K=2

—_—————
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. Inductive Representation Learning on Large Graphs
Graph-based semi-supervised learning (Inductive)

< GraphSAGE (SAmple and aggreGatE) Aggregator 1
% Full batch — Mini batch

Aggregator 2

% Transductive — Inductive (Sampling)

% Average X — Aggregating (Mean /LSTM / Pooling aggregator)

Mini batch : 2, search depth : 2 k=1 K=2

4 S
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. Inductive Representation Learning on Large Graphs
Graph-based semi-supervised learning (Inductive)

s GraphSAGE (SAmple and aggreGatE)

Algorithm 1: GraphSAGE embedding generation (i.e., forward propagation) algorithm

Input : Graph G(V, £); input features {x,, Vv € V}; depth K; weight matrices
WF ¥k € {1, ..., K}; non-linearity o differentiable aggregator functions

AGGREGATE,,, Yk € {1, ..., K'}: neighborhood function N : v — 2V

Output: Vector representations z,, forall v € V

Aggregator 2
hY « x,,VoeV;

fork=1..K do
for v £ V do
h}/(,) + AGGREGATEL({hi™",Yu € N'(v)});

h* o (W’“ - CONCAT(h™1, hi’(z-)))

= e b =

tn

end
hi‘; — hi’,f“hiﬁ”g,‘?’t—‘ cVy

]
7
s end
9 z, + hf Yo eV

Model
fX,A4W)
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. Graph Attention Networks

Graph-based semi-supervised learning + Attention mechanism
Published as a conference paper at ICLR 2018 398§| OLI%

GRAPH ATTENTION NETWORKS

Petar Velickovic® Guillem Cucurull®
Department of Computer Science and Technology Centre de Visid per Computador, UAB
University of Cambridge gcucurull@gmail.com

petar.velickovicl@est.cam.ac.uk

Arantxa Casanova® Adriana Romero

Centre de Visio per Computador, UAB Montréal Institute for Learning Algorithms
ar.casanova.BEgmail.com adriana.romero.soriancfumontreal.ca
Pietro Lio Yoshua Bengio

Department of Computer Science and Technology ~ Montréal Institute for Learning Algorithms
University of Cambridge yoshua.umontreal@gmail. com

pietro.liclcst.cam.ac.uk

ABSTRACT

We present graph attention networks (GATs). novel neural network architectures
that operate on graph-structured data, leveraging masked self-attentional layers to
address the shortcomings of prior methods based on graph convolutions or their
approximations. By stacking layers in which nodes are able to attend over their
neighborhoods® features. we enable (implicitly) specifying different weights to
different nodes in a neighborhood, without requiring any kind of costly matrix op-
eration (such as inversion) or depending on knowing the graph structure upfront.
In this way, we address several key challenges of spectral-based graph neural net-
works simultaneously, and make our model readily applicable to inductive as well
as transductive problems. Our GAT models have achieved or matched state-of-the-
art results across four established transductive and inductive graph benchmarks:
the Cora, Cireseer and Pubmed citation network datasets, as well as a prorein-
protein interaction dataset (wherein test graphs remain unseen during training ).

Veli¢kovi¢, P., Cucurull, G., Casanova, A., Romero, A, Lio, P., & Bengio, Y. (2017). Graph attention networks. arXiv preprint arXiv:1710.10903.
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. Graph Attention Networks
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Table 1: Summary of the datasets used in our experiments.

Cora Citeseer Pubmed PPI
Task Transductive Transductive Transductive Inductive
# Nodes 2708 (1 graph) 3327 (1 graph) 19717 (1 graph) 56944 (24 graphs)
# Edges 5429 4732 44338 818716
# Features/Node 1433 3703 500 50
# Classes 7 6 3 121 (multilabel)
# Training Nodes 140 120 60 44906 (20 graphs)
# Validation Nodes 500 500 500 6514 (2 graphs)
# Test Nodes 1000 1000 1000 5524 (2 graphs)
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Table 2: Summary of results in terms of classification accuracies, for Cora, Citeseer and Pubmed.
GCN-64" corresponds to the best GCN result computing 64 hidden features (using ReLU or ELU).

Transductive

Method Cora Citeseer Pubmed
MLP 55.1% 46.5% 71.4%
ManiReg (Belkin et al., 2006) 59.5% 60.1% T70.7%
SemiEmb (Weston et al.,[2012) 59.0% 59.6% T1.7%

LP (Zhu et al.,|2003 68.0% 45.3% 63.0%
DeepWalk (Perozzi et al.,|2014) 67.2% 43.2% 63.3%

ICA (Lu & Getoor, 2003 75.1% 69.1% 73.9%
Planetoid ( Yang et al.| [2016) 73.7% 64.7% T7.2%
Chebyshev (Defferrard et al.,[2016) 81.2% 69.8% 74.4%

GCN (Kipf & Welling, 2017) 81.5% 70.3% 79.0%
MoNet (Monti et al.,[2016) 81.7+0.5% — 78.8 £ 0.3%
GCN-64 81.4+£0.5% 709 +05% 79.0+0.3%
GAT (ours) 83.0+07% T72.5+£07% 79.0+t0.3%
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Table 3: Summary of results in terms of micro-averaged F, scores, for the PPI dataset. GraphSAGE”
corresponds to the best GraphSAGE result we were able to obtain by just modifying its architecture.
Const-GAT corresponds to a model with the same architecture as GAT, but with a constant attention
mechanism (assigning same importance to each neighbor; GCN-like inductive operator).

Inductive
Method PPI
Random 0.396
MLP 0.422

GraphSAGE-GCN (Hamilton et al.l|2017) 0.500
GraphSAGE-mean (Hamilton et al., 2017)  0.598
GraphSAGE-LSTM (Hamilton et al., 2017) 0.612
GraphSAGE-pool (Hamilton et al.| [2017) 0.600

GraphSAGE* 0.768
Const-GAT (ours) 0.934 £ 0.006
GAT (ours) 0.973 + 0.002
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. Appendix. Inductive Representation Learning on Large Graphs

s GraphSAGE (SAmple and aggreGatE)

Algorithm 2: GraphSAGE minibatch forward propagation algorithm
Input : Graph G(V, E):
input features {x,, Vv € B}:
depth K ; weight matrices W* vk € {1,...,K}:
non-linearity o
differentiable aggregator functions AGGREGATE, Vk € {1,..., K };
neighborhood sampling functions, N3 : v — 2V ¥k € {1,...,K}
Output : Vector representations z,, forallv € B
1 BE — B:
2 fork=K...1do
3 BF1 Bk
1 for u € B* do
5 | BFT! - BFTL U NG (u):
6 end
.
8
9

end
11"3£ — X, Vo € B :
fork=1..K do
10 for u € B do
11 h}/ () < AGGREGATE; ({h}, !, Vu' € Ni(u)});
12 hf «— o (‘Wk . CONCAT(hﬁ—l,lﬁ{,M));
13 hE < h% /| k|5
14 end

15 end
16 Z, hff,'v’-u cB
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. Appendix. Inductive Representation Learning on Large Graphs

s GraphSAGE (SAmple and aggreGatE)

Goal is to encode nodes so that similarity in
the embedding space (e.g., dot product)

approximates similarity in the original network.

e L LLLE L LT
.

encode nodes

ar
s
..........
.....................................

original network embedding space

http://snap.stanford.edu/proj/embeddings-www/
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. Appendix. Inductive Representation Learning on Large Graphs

.ﬁ

s GraphSAGE (SAmple and aggreGatE)

3.2 Learning the parameters of GraphSAGE

In order to learn useful, predictive representations in a fully unsupervised setting, we apply a
graph-based loss function to the output representations, z,, Yu € V, and tune the weight mairices,
WPk ¥k € {1, ..., K}, and parameters of the aggregator functions via stochastic gradient descent. The
eraph-based loss function encourages nearby nodes to have similar representations, while enforcing
that the representations of disparate nodes are highly distinct:

T T
Jg(z,) = —log (U(Zﬂ ZU)) —Q-E, ~p, (v log (O’(—Zﬂ zvn)) . (1)
where v 1s a node that co-occurs near u on fixed-length random walk, o 1s the sigmoid function,

P, is a negative sampling distribution, and ¢) defines the number of negative samples. Importantly,

unlike previous embedding approaches, the representations z,, that we feed into this loss function
are generated from the features contained within a node’s local neighborhood, rather than training a
unique embedding for each node (via an embedding look-up).

This unsupervised setting emulates situations where node features dl‘k provided to downstream
machine learning applications, as a service or in a static repository. In cases where representations
are to be used only on a specific downstream task. the unsupervised loss (Equation[I) can simply be
replaced, or augmented, by a task-specific objective (e.g.. cross-entropy loss).
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.ﬁ

s Experimental Setup

3.3 EXPERIMENTAL SETUP

Transductive learning For the transductive learning tasks, we apply a two-layer GAT model. Its
architectural hyperparameters have been optimized on the Cora dataset and are then reused for Cite-
seer. The first layer consists of K = 8 attention heads computing F'* = 8 features each (for a total
of 64 features), followed by an exponential linear unit (ELU) (Clevert et al., 2016) nonlinearity. The
second layer is used for classification: a single attention head that computes C' features (where C
is the number of classes), followed by a softmax activation. For coping with the small training set
sizes, regularization is liberally applied within the model. During training, we apply Lg regulariza-
tion with A = 0.0005. Furthermore, dropout (Srivastava et al., 2014) with p = 0.6 is applied to
both layers’ inputs, as well as to the normalized attention coefficients (critically, this means that at
each training iteration, each node is exposed to a stochastically sampled neighborhood). Similarly
as observed by Monti et al.|(2016), we found that Pubmed’s training set size (60 examples) required
slight changes to the GAT architecture: we have applied K = 8 output attention heads (instead of
one), and strengthened the L, regularization to A = 0.001. Otherwise, the architecture matches the
one used for Cora and Citeseer.
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Inductive learning For the inductive learning task, we apply a three-layer GAT model. Both of the
first two layers consist of K = 4 attention heads computing F’ = 256 features (for a total of 1024
features), followed by an ELU nonlinearity. The final layer is used for (multi-label) classification:
K = 6 attention heads computing 121 features each, that are averaged and followed by a logistic
sigmoid activation. The training sets for this task are sufficiently large and we found no need to apply
L5 regularization or dropout—we have, however, successfully employed skip connections
2016) across the intermediate attentional layer. We utilize a batch size of 2 graphs during training. To
strictly evaluate the benefits of applying an attention mechanism in this setting (i.e. comparing with
a near GCN-equivalent model), we also provide the results when a constant attention mechanism,
a(z,y) = 1, is used, with the same architecture—this will assign the same weight to every neighbor.

Both models are initialized using Glorot initialization (Glorot & Bengio, 2010) and trained to mini-
mize cross-entropy on the training nodes using the Adam SGD optimizer (Kingma & Ba||2014) with
an initial learning rate of (.01 for Pubmed, and 0.0035 for all other datasets. In both cases we use
an early stopping strategy on both the cross-entropy loss and accuracy (transductive) or micro-F,
(inductive) score on the validation nodes, with a patience of 100 epochﬂ
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