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Meta Learning

§ In psychology, learning about one's own learning and learning processes

김병만 자격증 보유 리스트
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Meta Learning in Machine Learning

§ It is also known as “learning to learn”, intends to design models that can learn new skills 

or adapt to new environments rapidly with a few training examples. 
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Relation to Transfer Learning

§ Storing knowledge gained while solving one problem and applying it to a different but 

related problem 

Transfer Learning Idea
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Relation to Multi-Task Learning

§ Multiple learning tasks are solved at the same time, while exploiting commonalities and 

differences across tasks. 

Multi-Task Learning Idea
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Meta Learning in Supervised Learning

§ Different performance evaluation scheme from transfer learning or multi-task learning
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Reinforcement Learning (RL)

§ Find policy 𝛑 𝒂 𝒔 while maximize cumulative rewards

§ It is called approximate dynamic programming

Environment

Agent State: s
Reward: r

Actions: a
Interaction
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Meta Learning in Reinforcement Learning

§ Fast learning (=sample efficiency) on unseen tasks
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Meta Learning in Reinforcement Learning

§ Fast learning (=sample efficiency) on unseen tasks
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Research Objective

§ Learning hierarchically structured policies, improving sample efficiency on unseen tasks

§ Hierarchical reinforcement learning (HRL) aims to decompose large problems into 

smaller ones to address scalability issues.

High-Level Policy: macro action

Low-Level Policy: micro action
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HRL: Example1

§ Hierarchical reinforcement learning (HRL) aims to decompose large problems into 

smaller tasks to address scalability issues.

§ Task: go to bath room & wash hands

Brain

Walk Open 
door

Wash 
hand
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HRL: Example1

§ Robot has high dimensional action space (e.g. control every joint torque)

MUJOCO Walking with PPO
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HRL: Example2

§ Hierarchical reinforcement learning (HRL) aims to decompose large problems into 

smaller tasks to address scalability issues.

§ Task: Starcraft

Brain

Battle Collect 
Resource Scout
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Research Objective

§ Learning hierarchically structured policies, improving sample efficiency on unseen tasks

§ Hierarchical reinforcement learning (HRL) aims to decompose large problems into 

smaller ones to address scalability issues

High-Level Policy: macro action

Low-Level Policy: micro action
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Simple Example: 2D Moving Bandits

§ We consider the setting where agents solve distributions of related tasks, with the goal 

of learning new task quickly. One challenge is that while we want to share information 

between the different tasks, these tasks have different optimal policies, so it is 

suboptimal to learn a single shared policy for all tasks.



21

Contents

§ Meta Learning

§ Meta Learning in Reinforcement Learning

§ Problem Statement

§ Proposed Method

§ Experiments

§ Conclusions



22

Meta Learning Shared Hierarchies (MLSH)

§ Meta learning: small-size tasks (environments)

§ Hierarchical RL: complex task

§ Learn sub-policies automatically without hand engineering 

High-Level Policy: macro action

Low-Level Policy: micro action

Brain

Battle Collect 
Resource Scout
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Training of MLSH

§ Skip
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Training of MLSH

§ 𝜃: parameters of master policy

§ 𝜙: parameters of sub-policies

§ Repeat steps until convergence

§ Sample task 𝑀~𝑃)
§ Initialize 𝜃

Step1: Task Sampling

§ Update master policy

§ 10~30 iterations

Step2: Warmup

§ Update master & sub policy

§ 30~40 iterations

Step3: Joint Update
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Training Master Policy

§ Master policy actions last for N time steps

§ State: N observations

§ Action: sub-policy selection

§ Reward: mean of rewards for N time steps

Time Scale N=3 Example

T1 T2 T3
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Training Sub-Policies

§ State: observation & master action

§ Action: low-level actions

§ Reward: reward for each time step
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How to Calculate Gradients

§ 𝛻𝜃, 𝛻𝜙

§ Use existing reinforcement learning algorithms

§ DQN, A3C, TRPO, PPO, …

𝜃 ← 𝜃 + 𝛼.𝛻𝜃 , 𝛼. = 0.01

𝜙 ← 𝜙 + 𝛼4𝛻𝜙 , 𝛼4 = 0.0003



28

Contents

§ Meta Learning

§ Meta Learning in Reinforcement Learning

§ Problem Statement

§ Proposed Method

§ Experiments

§ Conclusions



29

Simple Environment

§ “Can meaningful sub-policies be learned over a distribution of tasks, and do they 

outperform a shared policy?”

§ Movement Bandits Environment: agent starts at a specific spot in the gridworld, and is 

randomly assigned a goal position. A reward of 1 is awarded for being in the goal state.
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Comparison to Other Approach

§ MLSH: two sub-policies + master policy

§ Shared policy over various tasks

§ Single policy from scratch
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Comparison to Existing HRL 

§ Environment: four room

§ Existing method: Option Critic
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Complex Environments

§ Mujoco based environments

§ Actions: angle of multiple joint
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Comparison to Other Approach

§ Task: Twowalk (ant bandits)

§ MLSH: two sub-policies + master policy

§ Shared policy over various tasks

§ Single policy from scratch



34

Comparison to Other Approach

§ Task: Walk/Crawl

§ MLSH: two sub-policies + master policy

§ Shared policy over various tasks



35

Maze Environment Example

§ Task: Escape maze

§ Shared policy over various tasks
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Maze Environment Example

§ Task: Escape maze

§ Shared policy over various tasks
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Sparse Reward Envrionment

§ Task: Ant Obstacle

§ Agent must navigate to the green square in the top right corner. Entering the red circle 

causes an enemy to attack the agent, knocking it back.

§ Reward: 1 if success, 0 otherwise
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Sparse Reward Envrionment

§ Transfer from TwoWalk task
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Conclusions

Summary

§ Metalearning approach for learning hierarchically structured policies, improving sample 

efficiency on unseen tasks

§ Transferability of primitives to solve long-timescale sparse-reward obstacle courses

Critic

§ No constant evaluations

§ Is really meta learning? Strong relation to hierarchical reinforcement learning

§ Two stage training scheme is not nice (why warmup?)

§ Many hyper parameters. Especially the number of sub-policies
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Research Idea

§ 𝜃: parameters of master policy

§ 𝜙: parameters of sub-policies

§ Add constraint to encourage diversification of sub-policies (i.e. max ∑:;< 𝜙: − 𝜙< )


