Mixup and Application

신욱수

shinoops@korea.ac.kr

- 신욱수 (Wooksoo Shin)
 - Data Mining & Quality Analytics Lab
 - 박사과정 (2019.03 ~ present)
- Research Interest
 - Machine Learning Algorithm including Image Classification
 - Complexity Analysis
 - Scheduling & Allocation Algorithm
- Contact
 - E-mail : shinoops@korea.ac.kr

✤Mixup 개요

✤Mixup의 원리

✤Mixup의 효과

◆진행 중 연구 소개

Published as a conference paper at ICLR 2018

mixup: BEYOND EMPIRICAL RISK MINIMIZATION

Hongyi Zhang MIT Moustapha Cisse, Yann N. Dauphin, David Lopez-Paz* FAIR

Abstract

Large deep neural networks are powerful, but exhibit undesirable behaviors such as memorization and sensitivity to adversarial examples. In this work, we propose *mixup*, a simple learning principle to alleviate these issues. In essence, *mixup* trains a neural network on convex combinations of pairs of examples and their labels. By doing so, *mixup* regularizes the neural network to favor simple linear behavior in-between training examples. Our experiments on the ImageNet-2012, CIFAR-10, CIFAR-100, Google commands and UCI datasets show that *mixup* improves the generalization of state-of-the-art neural network architectures. We also find that *mixup* reduces the memorization of corrupt labels, increases the robustness to adversarial examples, and stabilizes the training of generative adversarial networks.

* 2021.3.30 현재 1567회 인용

Risk
$$R(f) = E[L(f(x), y)] = \int L(f(x), y)dP(x, y)$$

, where $(x, y) \sim P(X, Y)$, Loss function l, Risk R , $f \sim \mathcal{F}$

20

Risk Minimization $f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} R(f)$

Empirical Risk
$$R_{\delta}(f) = \int L(f(x), y) dP_{\delta}(x, y) = \frac{1}{n} \sum_{i=1}^{n} L(f(x_i), y_i)$$

Empirical Risk Minimization $\hat{f} = \underset{f \in \mathcal{F}}{\operatorname{argmin}} R_{\delta}(f)$

논문에서 의미하는 augmentation이란?

일반적으로 보이는 다음 이미지들은 아님

Symmetry

Scale

Noise

Blur

Rotation

Hue

Different augmentations

Src: https://medium.com/@wolframalphav1.0/easy-way-to-improve-image-classifier-performance-part-1-mixup-augmentation-with-codes-33288db92de5

Contribution Motivated by these issues, we introduce a simple and data-agnostic data augmentation routine, termed *mixup* (Section 2). In a nutshell, *mixup* constructs virtual training examples

 $\tilde{x} = \lambda x_i + (1 - \lambda) x_j$, where x_i, x_j are raw input vectors $\tilde{y} = \lambda y_i + (1 - \lambda) y_j$, where y_i, y_j are one-hot label encodings

 (x_i, y_i) and (x_j, y_j) are two examples drawn at random from our training data, and $\lambda \in [0, 1]$. Therefore, *mixup* extends the training distribution by incorporating the prior knowledge that linear interpolations of feature vectors should lead to linear interpolations of the associated targets. *mixup* can be implemented in a few lines of code, and introduces minimal computation overhead.


```
# y1, y2 should be one-hot vectors
for (x1, y1), (x2, y2) in zip(loader1, loader2):
    lam = numpy.random.beta(alpha, alpha)
    x = Variable(lam * x1 + (1. - lam) * x2)
    y = Variable(lam * y1 + (1. - lam) * y2)
    optimizer.zero_grad()
    loss(net(x), y).backward()
    optimizer.step()
```

(a) One epoch of *mixup* training in PyTorch.

Figure 1: Illustration of *mixup*, which converges to ERM as $\alpha \rightarrow 0$.

(b) Effect of *mixup* ($\alpha = 1$) on a toy problem. Green: Class 0. Orange: Class 1. Blue shading indicates p(y = 1|x).

Mixup in Action

[1, 0]

[0.5, 0.5]

[0, 1]

Mix-up works by blending 2 images with alpha % from image_1 and (1-alpha) % from image_2

Src: https://medium.com/@wolframalphav1.0/easy-way-to-improve-image-classifier-performance-part-1-mixup-augmentation-with-codes-33288db92de5

λ Distribution 샘플

 $\alpha \in [0.1; 0.4]$ leads to improved performance, smaller α creates less mixup effect, whereas, for large α , mixup leads to underfitting.

As you can see in the following graph, given a small $\alpha = 0.2$, beta distribution samples more values closer to either 0 and 1, making the mixup result closer to either one of the two examples.

λ 의 변화에 따른 Mixup 효과

 $\lambda x_1 + (1 - \lambda) x_2$

Dataset	Model	ERM	mixup
CIFAR-10	PreAct ResNet-18 WideResNet-28-10 DenseNet-BC-190	$5.6 \\ 3.8 \\ 3.7$	$4.2 \\ 2.7 \\ 2.7$
CIFAR-100	PreAct ResNet-18 WideResNet-28-10 DenseNet-BC-190	$25.6 \\ 19.4 \\ 19.0$	$egin{array}{c} 21.1 \ 17.5 \ 16.8 \end{array}$

(a) Test errors for the CIFAR experiments.

CIFAR-10 Test Error 20 DenseNet-190 baseline 15 DenseNet-190 mixup 10 5 0 50 100 150 200epoch

(b) Test error evolution for the best ERM and *mixup* models.

Figure 3: Test errors for ERM and *mixup* on the CIFAR experiments.

Model	Method	Validation set	Test set
	ERM	9.8	10.3
LeNet	mixup ($\alpha = 0.1$)	10.1	10.8
	mixup ($\alpha = 0.2$)	10.2	11.3
	ERM	5.0	4.6
VGG-11	mixup ($\alpha = 0.1$)	4.0	3.8
	mixup $(\alpha = 0.2)$	3.9	3.4

Figure 4: Classification errors of ERM and *mixup* on the Google commands dataset.

Label corruption	Method	Test error		Training error	
		Best	Last	Real	Corrupted
	ERM	12.7	16.6	0.05	0.28
20%	ERM + dropout $(p = 0.7)$	8.8	10.4	5.26	83.55
	mixup ($\alpha = 8$)	5.9	6.4	2.27	86.32
	mixup + dropout ($\alpha = 4, p = 0.1$)	6.2	6.2	1.92	85.02
	ERM	18.8	44.6	0.26	0.64
50%	ERM + dropout ($p = 0.8$)	14.1	15.5	12.71	86.98
	mixup ($\alpha = 32$)	11.3	12.7	5.84	85.71
	<i>mixup</i> + dropout ($\alpha = 8, p = 0.3$)	10.9	10.9	7.56	87.90
	ERM	36.5	73.9	0.62	0.83
80%	ERM + dropout ($p = 0.8$)	30.9	35.1	29.84	86.37
0070	mixup ($\alpha = 32$)	25.3	30.9	18.92	85.44
	mixup + dropout ($\alpha = 8, p = 0.3$)	24.0	24.8	19.70	87.67

Table 2: Results on the corrupted label experiments for the best models.

- Mixup을 어떻게 활용할 수 있을까요?

- 논문에서의 Mixup의 역할
 - Mixup을 사용하여 기존 Single label classification의 성능을 향상
- Mixup의 중간과정과 본질을 생각하면
 - Multi-label 문제에 적합!

Mixed-type defect pattern (not included)

Edge-ring-center

Loc-center

Scratch-center

Scratch-Donut

- 믹스업 활용시 복합 결함 데이터 분류 정확도 향상 ('20.11 대한산업공학회)

- 단순 학습 시 복합 패턴 분류 성능(baseline)은 72%
- 믹스업 학습 시 복합 패턴 분류 성능 92% 수준으로 향상
- Baseline 대비 정확도 20% 향상됨.

Αςςι	uracy		Alexnet	VGGnet-16	Resnet-18	Resnet-34	Resnet-50	
단순 패턴 분류	단순 학습 (baseline)	0.977 (0.001)	0.981 (0.001)	0.978 (0.000)	0.977 (0.000)	0.977 (0.001)	단순 패턴 분류 성능은 거의 유지	
	믹스업 학습 (제안방법)	0.970 (0.001)	0.974 (0.001)	0.971 (0.001)	0.970 (0.001)	0.972 (0.001)		
복합 패턴 분류	단순 학습 (baseline)	0.715 (0.023)	0.678 (0.035)	0.738 (0.008)	0.750 (0.012)	0.749 (0.004)	복합 패턴 분류 성능은 대폭 향상	
	믹스업 학습 (제안 방법)	0.872 (0.015)	0.964 (0.020)	0.928 (0.019)	0.895 (0.013)	0.902 (0.011)		

- 개선된 Mixup 방법 연구 및 다양한 테스트 진행 중

감사합니다.

