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To estimate the expected accuracy from finite samples, we
group predictions into M interval bins (each of size 1/M)
and calculate the accuracy of each bin. Let B,, be the set

of indices of samples whose prediction confidence falls into
m—1 1 m

Reliability Diagrams the interval [, = (*57" 1 The accuracy of By, is
aCC(Bm)— |Bm| Z '_y‘!.

1EB,,

I Confidence

1.0 A
| | 3 Accuracy where 7; and y; are the predicted and true class labels for
|aCC(Bm) _ Conf(Bm) | sample i. Basic probability tells us that acc(B,, ) is an un-

biased and consistent estimator of P(Y =Y | P € [,,).
We define the average conﬁdence within bin B,,, as

zGB

0.8

GilA)) M=15 -

0.4 4 where p; is the confidence for sample i. acc(B,,) and

conf(B,,) approximate the left-hand and right-hand sides
of (1) respectively for bin B,,,. Therefore, a perfectly cal-
ibrated model will have acc(B,,) = conf(B,,) for all
m € {1, ..., M}. Note that reliability diagrams do not dis-
play the proportion of samples in a given bin, and thus can-
not be used to estimate how many samples are calibrated.
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1

Through extensive experiments, we observe that g n
depth, width, weight decay, and Batch Normal- 0.0
I‘HI 0.2 04 06 08 L0 00 02 04 06

ization are important factors influencing calibra-

0.8 10

tion. We evaluate the performance of various
post=processing calibration methods on stateof«
the-art architectures with image and document
classification datasets. Our analysis and exper-
iments not only offer insights into neural net-
work leamning. but also provide a simple and
straightforward recipe for practical settings: on
most datasets, temperature scaling — a single-

I Ouiputs

parameter variant of Platt Scaling = is surpris= 00 02 04 06 DR 10 00 02 04 06
ingly effective at calibrating predictions. Confidence
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Revisiting the Calibration of
Modern Neural Networks

Matthias Minderer Josip Djolonga Rob Romijnders Frances Hubis
Xiaohua Zhai Neil Houlsby Dustin Tran Mario Lucic

Google Research, Brain Team
{mjlm, lucic}@google.com

Abstract

Accurate estimation of predictive uncertainty (model calibration) is essential for the
safe application of neural networks. Many instances of miscalibration in modern
neural networks have been reported, suggesting a trend that newer, more accurate
models produce poorly calibrated predictions. Here, we revisit this question for
recent state-of-the-art image classification models. We systematically relate model
calibration and accuracy, and find that the most recent models, notably those not
using convolutions, are among the best calibrated. Trends observed in prior model
generations, such as decay of calibration with distribution shift or model size, are
less pronounced in recent architectures. We also show that model size and amount
of pretraining do not fully explain these differences, suggesting that architecture is
a major determinant of calibration properties.
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Figure 2. The effect of network depth (far left), width (middle left), Batch Normalization (maddle right), and weight decay (far nght) on
miscalibration, as measured by ECE (lower is better).
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Figure 1. Confidence histograms (top) and reliability diagrams Training ACCU racy: 1 00%
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on CIFAR-100. Refer to the text below for detailed illustration.
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¥ PMLR 2017, 37392 212 v NeurlPS 2021, 1178] 218

Revisiting the Calibration of
Modern Neural Networks

Calibration of (Modern) Deep Neural Networks

% O TEES 74 0|0|X| £5 20| o Z2 ME|TS JHX|D ek
«  Convolutional VS Non—Convolutional [Vision Transformer(2021), MLP-Mixer(2021), -+, etc.]

Vision Transformer (ViT) ' Transformer Encoder
Class
Bird MLP =g =8
& -H d i iT? i ; Rt
o T train your VIT? Data, Augmentation, iransformer in Computer Vision
L. and Regularization in Vision Transformers
VI S I On ‘ Transformer Encoder

|
Transformer e ob o) ehe) 6)8) &) @)a) o)

20Z2m.2

(cLC. mbedding [ Linear Projection of Flattened Patches ] Dtz Minis d Quatty Anaits La
= 17N = Y Anahtcs Lan
SEE O O I 2 ; Ancly
o 5 O
WH! - - - - . -
How to train your ViT? Data, Augmentatic Transformer in Computer Vision
EE:2 g ae EE: T % B4
=L S s = .
e P RESEEEEEEL I ' £ 2022918 212 £9 20214 38 262
z {3 214~ 8 ez14-~
. [ Gloral Avcrige Poolng )|
MLP-Mixer e @ =2tel virl2 A4 (YouTube) © =2te! HITl2 Al (YouTube)
, 0008000008
f98 LDL] DR
Fi 1: MLP-Mi sists of per-patch li beddings, Mixer | s, and a classifier head.
Mixer layoes contain one token mixing MLP and one channel-mixing MLP, cach consisting of two Mol s 271 — HolLt = 271 —

fully-connected layers and a GELU nonlinearity. Other components include: skip-connections,
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Dosovitskiy, Alexey, et al. "An image is worth 16x16 words: Transformers for image recognition at scale.” ICLR, 2021.
Tolstikhin, llya O., et al. "Mlp—mixer: An all-mlp architecture for vision." Advances in neural information processing systems, 2021. 25/42
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. MLP-Mixer (Tolstikhin et al., 2021) is based exclusively on multi-layer perceptrons (MLPs)

and is pre-trained on large supervised datasets.

ViT (Dosovitskiy et al., 2021) processes images with a transformer architecture originally
designed for language (Vaswani et al., 2017) and 1s also pre-trained on large supervised datasets.
BiT (Kolesnikov et al., 2020) is a ResNet-based architecture (He et al., 2016). It is also
pre-trained on large supervised datasets.

ResNext-WSL (Mahajan et al., 2018) is based on the ResNeXt architecture and trained with
weak supervision from billions of hashtags on social media images.

SimCLR (Chen et al., 2020) is a ResNet, pretrained with an unsupervised contrastive loss.
CLIP (Radford et al., 2021) is pretrained on raw text and imagery using a contrastive loss.
AlexNet (Krizhevsky et al., 2012; Krizhevsky, 2014) was the first convolutional neural network
to win the ImageNet challenge.

Minderer, Matthias, et al. "Revisiting the calibration of modern neural networks." Advances in Neural Information Processing Systems 34 (2021) 26/42
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w G- X Guo et al. pre-trained on large supervised datasets.
w 0.044 4. ResNext-WSL (Mahajan et al., 2013) 1s based on the ResNeXt architecture and trained with
© 0.03 weak supervision from billions of hashtags on social media images.
= 0.02 4 ‘. s 5. SimCLR (Chen et al., 2020) is a ResNet, pretrained with an unsupervised contrastive loss.
' ® 6. CLIP (Radford et al., 2021) is pretrainec on raw text and imagery using a contrastive loss.
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3. Improving Calibration of Deep Neural Networks
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Table 3: Expected calibration error (ECE) on different architectures/datasets.
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