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. Semi—-supervised learning under class distribution mismatch
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. Semi—-supervised learning under class distribution mismatch
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“In recent years, many hybrid methods have been proposed,
which combine ideas, such as consistency regularization, data

augmentation, entropy minimization, and pseudo labeling.” [11]
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Hybrid methods for semi—supervised learning
 Fixmatch, 2020, NeurlPS

CIFAR-10 CIFAR-100 SVHN STL-10
Method 40 labels 250 1abels 4000 labels 400 1labels 2500 labels 10000 labels 40 labels 2501abels 1000 labels 1000 labels
II-Model - 54.26+3.97 14.01+0.38 - 57.25+0.48 37.88+0.11 - 18.96+1.92 7.54+0.36 26.23+082

Pseudo-Labeling - 49.78+043  16.09+0.28 - 57.38+046 36.21+0.19 - 20.2141.09 9.94+061  27.99+0.383
Mean Teacher - 32324230 9.19+0.19 - 53.91+0.57 35.83+0.24 - 3.57+0.11 3.42+0.07 21.434239
MixMatch 47.54+1150 11.05+086 6.42+010 67.61+1.32 39.94+0.37 28.31+033 42.55+1453 3.98+0.23 3.50+0.28 10.41+0.61
UDA 29.05+5.93 8.82+1.08 4.88+0.18 59.28+0.8 33.13+0.22 24.50+025 52.63+2051 5.69+2.76 2.46+0.24 7.66+0.56
ReMixMatch 19.10+9.64 5.44+0.05 4.72+013 44.28+2.06 27.43+031 23.03+0.56 3.34+020 2.92+048 2.65+0.08 5.23+045

FixMatch (RA) 13.81+337  5.07+065 4.26+005 48.85+175  28.29+0.11 22.60+0.12 3.96+217  2.48+0.38 2.28+0.11 7.98+1.50
FixMatch (CTA) 11.39+335  5.07+033 4.31+015 49.95+301  28.64+0.24 23.18+0.11 7.65+765  2.64+0.64 2.36+0.19 5.17+0.63

Table 2: Error rates for CIFAR-10, CIFAR-100, SVHN and STL-10 on 5 different folds. FixMatch
(RA) uses RandAugment [ | | ] and FixMatch (CTA) uses CTAugment [ 2] for strong-augmentation. All
baseline models (II-Model [4 3], Pseudo-Labeling [25], Mean Teacher [5 1], MixMatch [4], UDA [54],

and ReMixMatch [3]) are tested using the same codebase.




. Hybrid methods for semi—supervised learning

* Under class distribution mismatch

1. Preparing training dataset 2. Open-set detection 3. Fixmatch
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. Hybrid methods for semi—supervised learning

* Under class distribution mismatch

*»* One-vs—all classifiers for multi—class classification
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Bl Hybrid methods for semi-supervised learing
* Under class distribution mismatch

*»* One-vs—all classifiers for multi—class classification
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* Under class distribution mismatch

*»* One-vs—all classifiers for multi—class classification
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* Under class distribution mismatch

“* OpenMatch = Open-set detection + FixMatch
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Hybrid methods for semi—supervised learning
* Under class distribution mismatch

“* OpenMatch = Open-set detection + FixMatch
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Hybrid methods for semi—supervised learning
* Under class distribution mismatch

“* OpenMatch = Open-set detection + FixMatch

> One-vs—all classifiers M= SIS

40
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Unlabeled
example
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Feature Outlier
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Figure 1: An illustration of our proposed open-set soft-consistency loss used to enhance outlier
detection. Two differently augmented inputs are fed into the network to obtain the predictions of
the outlier detector. The detector consists of one-vs-all classifiers and is able to detect outliers in an
unsupervised way. The consistency loss is computed in a soft manner, i.e., without sharpening logits.
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Bl Hybrid methods for semi-supervised learing
* Under class distribution mismatch

“* OpenMatch = Open-set detection + FixMatch

Dataset CIFAR10 CIFAR100 CIFAR100 ImageNet-30
No. of Known / Unknown 6/4 551745 80/20 20/10
No. of labeled samples 50 100 400 50 100 50 100 10 %
Labeled Only 35.7411 30.5+07 20.0403  37.0408 27.3+05  43.6+05 34.7+04 20.9+10
FixMatch [35] 43.2+12 29.8+06 16.3+05 35.4+07 27.3+08 41.2+07 34.1+04 12.9+04
MTC [44] 20.3+09 13.7+09 9.0+05 33.5+12 279405 40.1+08 33.6+03 13.6+07
OpenMatch 10.4+09 7.1+05 5.9+0s5 277+04 24.1+t06 33.4+02 29.5+03 10.4+1.0

Table 1: Error rates (%) with standard deviation for CIFAR10, CIFAR100 on 3 different folds. Lower
is better. For ImageNet, we use the same fold and report averaged results of three runs. Note that the
number of labeled samples per each class is shown in each column.

Dataset CIFAR10 CIFAR100 CIFAR100 ImageNet-30
No. of Known / Unknown 6/4 551745 80/20 20/10
No. of labeled samples 50 100 400 50 100 50 100 10 %
Labeled Only 63.9+05 64.7+05 76.8+04  76.6+09 79.9+t09  T703+0s5 73.9+09 80.3+1.0
FixMatch [35] 56.1+06 60.4+04 71.84+04 72.0+13 75.8+412 64.3+10 66.1+05 88.6+05
MTC [44] 96.6+06 98.2+03 98.9+01  81.2+34 80.7x46  79.4+25 73.2435 93.8+038
OpenMatch 99.3+03 99.7+02 99.3+02  87.0+11 86.5+21 86.2+06 86.8+1.4 96.4+0.7

Table 2: AUROC of Table 1. Higher is better. Note that the number of labeled samples per each class
is shown in each column.



Hybrid methods for semi—supervised learning
* Under class distribution mismatch

“ OpenMatch = Open—set detection + FixMatch

Dataset CIFAR10 CIFAR100 ImageNet-30
No. Known / Unknown 6/4 80/20 20/10
No. Labeled samples 50 400 50 100 10 %
without SOCR 60.5+28 75.8+08  70.4+o01 73.2+02 81.3+04
with SOCR 81.3+29 96.8+06 78.9+01 85.0+08 89.3+03

Table 3: Ablation study of our soft consistency regularization (SOCR, L,.). We report AUROC
scores (%). In this study, we do not apply FixMatch to pseudo-inliers to see the pure gain from

w00 W/O Consistency oo ‘With Consistency 2000 Full
= Known B = Known || ™ Known
w0 ™ Unknown e ™ Unknown 90 m Unknown
3000 3000 3
00 2500
g 2000 E 2000
& &
1500 1500
1000 1000
500 500 I
o =175 =150 =125 =100 ~75 -5.0 =25 00 o =175 =150 =125 ~-100 -75 5.0 -5 00 o =175 =150 =125 -100 -75 =50 =25 o0
Open-set Classifier score Open-set Classifier score Open-set Classifier score
(a) w/o FixMatch, SOCR. (b) w/o FixMatch (c) FULL (OpenMatch)

Figure 3: The histograms of the outlier detector’s scores obtained with ablated models. Red: Inliers, Blue:
Qutliers. From left to right, a model without FixMatch and SOCR, a model without FixMatch, and a model with
all objectives. These results show that SOCR ensures separation between inliers and outliers, and FixMatch
added to SOCR can further enhance this separation.
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Bl Hybrid methods for semi-supervised learning
* Under class distribution mismatch

< Open-set detection s X6t > Unlabeled valuable data M7 - Ms Xot > MEL EH= O (|IOMatch, 2023, ICCV)

CIFAR-50-200 CIFAR-50-1250
Unlabeled E” Ol E-I 5540 FixMatch w/o outliers A —— FixMatch w/o outliers
S 50 - S
a 5‘ 711 N\
il o 67 ~ Vd
O 40 / O 63
S -~ g 93
< 354 ‘ < 50 -
30— = . 55 1 : .
FixMatch OpenMatch I0OMatch FixMatch OpenMatch I0Match

Figure 1. The motivation of our work comes from a surprising fact
in open-set semi-supervised learning tasks: An unreliable outlier
detector can be more harmful than outliers themselves, because

it will wrongly exclude valuable inliers from subsequent training.

For this issue, we consider a unified paradigm for utilizing openT
set unlabeled data, even when it is difficult to distinguish exactly

between inliers and outliers, and thus we propose IOMatch.
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* Under class distribution mismatch

< Open-set detection s X5t = Unlabeled valuable data Ml 2 d& XI5} > MZ2 BHZE T (I0OMatch, 2023, ICCV)
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* Under class distribution mismatch
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Bl Hybrid methods for semi-supervised learing
* Under class distribution mismatch

/

% I0OMatch: Simplifying open—set semi—supervised learning with joint inliers and outliers utilization

3.3. Joint Inliers and Outliers Utilization K+ 1 pI’Ob abilities

For all the open-set unlabeled samples, we adopt the Capab|e of detecting unseen-class
open-set targets as supervision to train the open-set clas-
sifier () with its predictions g§ = v(2%) € RE*! on the / \
strongly augmented samples:
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©2=P2702 Gy =1-310s
where 1(-) is the indicator function and 7, is the confidence :
threshold. In practice, we usually choose a low value for 7, _ - Probability (unseen-class)

so that most of the unlabeled samples can be utilized. Dif- q K = Pk X Ok

ferent from the traditional consistency regularization tech- /

nique, we use g; instead of the predictions g;” on the weakly

augmented samples as supervision. In this way, the genera-
tion and utilization of pseudo-labels can be disentangled to D
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* Under class distribution mismatch

/

% |OMatch: Simplifying open—set semi—supervised learning with joint inliers and outliers utilization

Then, for the closed-set classifier, we pro- K+1 Pro b.abI|ItIeS
pose a aouble filtering strategy to select high-quality seen- Ca pable of detectlng unseen-class
class pseudo-labels of inliers:
1 < / \
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* Under class distribution mismatch

/

% |OMatch: Simplifying open—set semi—supervised learning with joint inliers and outliers utilization
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* Under class distribution mismatch

/

% |OMatch: Simplifying open—set semi—supervised learning with joint inliers and outliers utilization
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Bl Hybrid methods for semi-supervised learing

* Under class distribution mismatch

Table 1. Closed-set classification accuracy (%) on the seen-class test data of CIFAR-10/100 with varying seen/unseen class splits and

/

labeled set sizes. We report the mean with standard deviation over 3 runs of different random seeds.

% |OMatch: Simplifying open—set semi—supervised learning with joint inliers and outliers utilization

Dataset CIFAR-10 CIFAR-100
Class split (Seen / Unseen) 6/4 20/ 80 50750 80/20

Number of labels per class 4 25 4 25 4 25 4 25
MixMatch [3] NeurIPS’19 43.08+1.79 63.13+064 28.13+£506 51.28+1.45 26.97+046 56931084 28.35+083 53.77+097
; ReMixMatch [2] ICLR’20 72.82+181 87.08+1.12 36.02+356 61.83+081 37.57+154 65.80+1.33 40.64+297 62.90+1.07
ﬁ' FixMatch [22] NeurIPS'20 81.58 +6.63 92.94 +0.80 46.27+064 66.45+074 4893 +505 68.77+0.89 43.06+1.21 64.44+051
= CoMatch [20] ICCV’'2]1 86.08 +1.08 92.57+047 43.53+3.01 66.82+1.37 43.17+055 67.85+1.17 37.89+1.22 62.04+0.08
= FlexMatch [41] NeurIPS’21 73.34+442 86.44+372 37.93+449 62.68+202 44.10+188 68.98+094 43.44+240 64.34+064
:,-!; SimMatch [43] CVPR’22 79.84+476 90.07+244 36.93+572 67.23+1.13 51.53+2.02 69.71 +1.44 50.32+2.57 65.68 +1.43
FreeMatch [34] ICLR’23  79.26+4.11 92.27+0.15 45.18+836 64.62+0.79 50.26+1.92 68.57+027 47.34+057 64.4]1 £0.55
- UASD [7] AAAT20 3525+1.07 56.42+134 29.78+428 53.78+0.67 29.08+144 5424 +1.10 26.41+216 50.33 062
74 DS3L[10] ICML'20 39.09+124 51.83+1.06 19.70+1.98 41.78+1.45 21.62+054 47.41+061 20.10+048 40.51 £1.02
o MTCEF [39] ECCV’20 49.15+6.12 7442+295 32.58+336 5593+1.66 3535+239 57.72+020 2540+1.20 54.59+0.49
E T2T [16] ICCV’21 .73.89+155 85.69+1.90 44.23x227 65.60+071 3931+1.16 68.59+092 38.16+0.59 63.86x0.32
ES OpenMatch [25] NeurIPS’21 43.63+326 66.27+186 37.45+267 62.70+1.76 33.74+038 66.53+0.54 28.54+1.15 61.23 £0.81
© | SAFE-STUDENT [14] CVPR’22 5928+1.18 77.87+0.14 34.53+067 58.07+140 35.84+086 62.75+038 34.17+069 57.99+0.34
IOMatch Qurs 89.68 +2.04 93.87+016 53.73:212 67.28+1.10 56.31+229 69.77 +0.58 50.83+0.99 64.75+0.52
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Figure 1. The motivation of our work comes from a surprising fact
in open-set semi-supervised learning tasks: An unreliable outlier
detector can be more harmful than outliers themselves, because
it will wrongly exclude valuable inliers from subsequent training.
For this issue, we consider a unified paradigm for utilizing open-
set unlabeled data, even when it is difficult to distinguish exactly
between inliers and outliers, and thus we propose IOMatch.
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Table 2. Open-set classification balanced accuracy (%) on the open-set test data of CIFAR-10/100, which consist of samples from all the
seen and unseen classes. We report the mean with standard deviation over 3 runs of different random seeds.

Dataset CIFAR-10 CIFAR-100
Class split (Seen / Unseen) 6/4 20/ 80 50/50 80/20
Number of labels per class 4 25 4 25 4 25 4 25
i UASD [7] AAAT20 17.10+032 36.01+022 10.50+0.83 26.96+0.53 6.92+0.55 32.23+054 5.77+021 27.61+1.15
% DS3L [10] ICML'20 30.89+033 40.45+0.77 12.56+1.21 34.35+041 12.14+039 35.17+048 11.10+1.27 29.09 +0.31
] MTCEF [39] ECCV’20 33.35+721 46.13+054 8.12+2.10 26.60+3.66 4.13+037 38.36+029 1.46+0.17 30.75+0.52
Vé T2T [16] ICCV’21 50.57+038 61.10+0.39 17.17+1.37 37.18+0.60 12.74+2.66 44.24+0.42 34.23+0.57 51.41+0.96
2 OpenMatch [25] NeurIPS’21 14.37+005 20.35+350 8.77+284 39.89+1.16 7.00£002 49.75+1.08 6.30+0.87 44.83+0.62
© | SAFE-STUDENT [14] CVPR’22 45.27+036 52.78+0.64 1594+1.07 28.83+046 23.98+0.88 46.71+1.74 29.43+0.66 50.48 +0.61
IOMatch Ours 75.08 £+1.92 78.96 +0.08 45.94 +1.70 58.52+0.48 46.36+1.93 60.78 +0.71 39.96 +0.95 54.39 +0.38




. Conclusion

Hybrid methods for semi—supervised learning

under class distribution mismatch

1. Preparing training dataset

Unlabeled G| O &

2. Open-set detection

Unlabeled Ci|O|E

3. Fixmatch

Unlabeled G| O] E

Labeled H|O|E

ﬁ A
L | [

30






