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. Introduction

Calibration of deep learning models

« Data = Model = Probability=> (Decision, Confidence)

* Decision=argmax{probability}, Confidence=max{probability}

2% | Dog

Decision="The class of this image is a cat.’
/8% Cat Confidence=78%’
78%=max{2%,78%,20%}

20% | Shark



. Introduction

Calibration of deep learning models

« Let’s suppose the following two neural networks have to classify the below
five images

Data Model 1

Probability —> Decision




. Introduction

Calibration of deep learning models

« Both models have the same accuracy with different confidence levels of 78.8% and

96.8%
Model 1: Well-calibrated Model 2: Poorly-calibrated
Accuracy and confidence are similar Accuracy and confidence are different
Data Label Decision Confidence Data Label Decision Confidence
O ﬂ Cat Cat 75% O a Cat Cat 98%
O & Cat Cat 80% O # Cat Cat 97%
x 55 Cat Dog 60% D 4 55 Cat Dog 95%
O H#E Cat Cat 80% O ™ Cat Cat 95%
O % Cat Cat 99% O b Cat Cat 99%
Average confidence 78.8% Average confidence 96.8%
Accuracy 80% Accuracy 80%




. Introduction

Calibration of deep learning models

* Chuan Guo, et al. “On calibration of modern neural networks.” PMLR, (2017)
* Most modern neural networks are assessed as overconfident (=poorly calibrated)

“Poorly-calibrated model”

Accuracy Confidence
“Modern deep neural networks”

such as ResNet, VGG, Visual Transformer ... 80% << 97%



. Introduction

Calibration of deep learning models

* Improving calibration: Aligning the accuracy and confidence to be similar
* Improving calibration makes the model to be used safely in real-world applications
* A well-calibrated model can be aware of their failed prediction

Modern deep neural networks

Poorly-calibrated model Well-calibrated model
Improving
Accuracy Confidence calibration Accuracy Confidence

80% << 97% 809 | NI 81%



. Introduction

Calibration of deep learning models

* Chuan Guo, et al. “On calibration of modern neural networks.” PMLR, (2017)
 Scaling logit vector to mitigate overconfidence in prediction 2 method name = temperature scaling (TS)

* TS investigates which scaling factor value (T) can attain the most optimal calibration result

Data

= Model

=

Z=Logit

1.84

-0.30

-0.99

Temperature

scaling
(=Divide logit by T)

Z/T=Scaled logit

0.92

-0.15

-0.50

Probability
0.98 Confidence
Softmax
—— 98%
0.01 0.01
[ ] ||
Dog Cat Shark

Scaled(smoothed) probability

0.83 Confidence

Softmax
—— 0.13 83%
I 0.04

|
Dog Cat Shark



. Introduction

Zero—shot classification using a vision—language model (VLMs)

« VLM can understand visual and linguistic information simultaneously [1]
* Therefore, achieving various downstream tasks such as visual question answering, image captioning, etc.

0D, CNN, VIiT, Pre-training O Masked Language Modeling
Patch Embedding Objectives O Masked Image Modeling
O Image-Text Matching
O Image-Text Contrastive Learning

Merged Attention/ -

Co-attention/

Image encoder Decoder

(optional)

Dot-product — » | OVisual Question Answering
A dog lying on . , Downst © Image Captioning
" g lying ; BERT, RoBERTa, Multimodal Fusion TD':HS "€aM | o Image-Text Retrieval
e grass nex asks .
to agfrisbee Word Embedding | O Phrase Grounding |

Text encoder

Figure 3.3: Illustration of a general framework for Transformer-based vision-language models.
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[1] Gan, Zhe, et al. "Vision-language pre-training: Basics, recent advances, and future trends." Foundations and Trends® in Computer Graphics and Vision 14.3—-4 (2022): 163-352.



. Introduction

Zero—shot classification using a vision—language model (VLMs)

« VLM can understand visual and linguistic information simultaneously [1]

* Ex) Text and image features related to birds are similar to each other, and text and image features related
to cats are similar to each other.

Text feature vectors
Representation space
1 | “Thisis a bird”| —» 1 2
Text .
— 1 2 T, Bird
encoder
2 |“Thisisacat” | —> 1 2
"""""""""" Cat
Image feature vectors /| N e .
N J ',.f'l ",
=SS Image . > /
; encoder M
2 *» 1 2
o |

[1] Gan, Zhe, et al. "Vision-language pre-training: Basics, recent advances, and future trends." Foundations and Trends® in Computer Graphics and Vision 14.3—-4 (2022): 163-352.



. Introduction

Zero—shot classification using a vision—language model (VLMs)

« For zero-shot classification tasks, we need VLM, a testing dataset, and class labels (text)

\\/—\

) Class label

Text Image e o ot N
encoder| |encoder dataset 0g, Cat, Horse, Turtle

/ / ~
Ex) EXx)

Transformer Vision transformer,
resnet 50

12



. Introduction

Zero—shot classification using a vision—language model (VLMs)

1. Prompt engineering: a photo of a + <class>

Class label

Dog, Cat, Horse, Turtle

TELIES
Rpolof 27 o

|
™ ™

A photo of a dog

Id

O]
TE H

|

2
=

F

rr
rtot

A photo of a cat

A photo of a horse

k A photo of a turtle /




. Introduction

Zero—shot classification using a vision—language model (VLMs)

2. Extract text feature vectors from the generated prompts

Class label

Dog, Cat, Horse, Turtle

TELIES
Rpolof 27 o

|
Ex) ( \

A photo of a dog

Id

O]
TE H

|

2
=

F

rr
rtot

2| Aphoto of a cat

3| Aphoto of a horse

< A photo of a turtle /

\

Text
encoder

/

Text embedding

14



. Introduction

Zero—shot classification using a vision—language model (VLMs)

3. Extract an image feature vector from the input image

Input image

Image embedding

/

Image
encoder

[

Ex)
( A photo of a dog \ t1 1t t3 ty
2| Aphoto of a cat Text
—> —>
encoder

3| Aphoto of a horse

\

4| Aphoto of a turtl ,
K poooaure/ Text embedding

15



. Introduction

Zero—shot classification using a vision—language model (VLMs)

4. Calculate the cosine similarities between the image feature and the text features

Ex)

Input image

A photo of a dog

~

A photo of a cat

A photo of a horse

A photo of a turtle

/

Image
encoder

1/

[

Text
encoder

\

Image embedding

Text embedding

Cosine similarities
(=Logit for classification)

16



. Introduction

Zero—shot classification using a vision—language model (VLMs)

4. Calculate the cosine similarities between the image feature and the text features

Ex)

Input image

A photo of a dog

~

A photo of a cat

A photo of a horse

A photo of a turtle

/

Image
encoder

[

Text
encoder

1/

\

Image embedding

Cosine similarities
(=Logit for classification)

/

14 ty

14 t3

Il t4_

1] [lE4ll

1]l [lt2]]

4]l [1ts]]

1] [ltall

Text embedding

17




. Introduction

Zero—shot classification using a vision—language model (VLMs)

5. Transform the cosine similarities into probabilities over the all classes using softmax

Ex)

Input image

A photo of a dog

~

A photo of a cat

A photo of a horse

A photo of a turtle

/

Image
encoder

[

Text
encoder

1/

\

* Max prob = confidence / Class with the max prob = decision

Image embedding

Cosine similarities
(=Logit for classification)

/

14

t;

14 t3

11 t4_

1] [lE4ll

1]l [lt2]]

4]l [1ts]]

1] [ltall

Text embedding

‘ Softmax

P,

Ps

P,

l

“A photo of a horse”

1

8




. Paper reVieW (1) Text Image

.. : _ _ encoder encoder
An empirical study into what matters for calibrating VLMs, 2024, ICML

Ex) Ex)
Transformer ViT, ConvNeXt

« Models: 35 VLMs (including CLIP, BLIP) With diverse training data and architectures

* They have various image-text pre-training frameworks, such as CLIP and BLIP

* They also have different visual encoder architectures (e.g., ViT and ConvNeXt) and training dataset
distributions and quantities

« Baseline: Non-VLM models

* ImageNet-trained CNNs (ResNet) and vision transformers (ViT)

19



l Paper review (1)

An empirical study into what matters for calibrating VL.Ms, 2024, ICML

« Datasets: ImageNet, CIFAR-10, DomainNet, including out-of-distribution scenarios

 Three standard image classification benchmarks
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l Paper review (1)

An empirical study into what matters for calibrating VL.Ms, 2024, ICML

« Datasets: ImageNet, CIFAR-10, DomainNet, including out-of-distribution scenarios

 Three standard image classification benchmarks

Dataset Examples

ImageNet-R

%%‘\ﬁQ@ﬁ\Bﬁﬂ@(ﬁ} é ObjectNet = ¥ {
/0)#@‘ 1$*:\&‘ ". AL
e f; > .-ﬂﬁ ImageNet
8 d X2 @ﬁ Sketch
.ﬂﬂiﬂH‘bﬂgL&Nl
WOG e Lpvm i UL, OHS

clock axe ball bicycle bird strawberry flower pizza bracelet bus II bucket  foot snorkel butterfly cup

sketch  real quickdraw painting infograph clipart

S I e
JE8oge s B

21



l Paper review (1)

An empirical study into what matters for calibrating VL.Ms, 2024, ICML

« Evaluation: expected calibration error (ECE)

» Difference between accuracy and confidence

Dataset Model

@ :Data point

N :Number of data

22



l Paper review (1)

An empirical study into what matters for calibrating VL.Ms, 2024, ICML

« Evaluation: expected calibration error (ECE)

» Difference between accuracy and confidence

Group 1
Dataset Model Mo ool  Highest confidence group
eeo0o0000 °©0o
ee0oo0000 Group 2
0000000 oo o
0000000 "¢ ¢ ¢| Second highest confidence group

@ :Data point

N :Number of data

Lowest confidence group

14
(72 X 100%, 100%]

13 100% 1 100%
& 15 0

1
(0%, — X 100%]

]

23



l Paper review (1)

An empirical study into what matters for calibrating VL.Ms, 2024, ICML

« Evaluation: expected calibration error (ECE)

» Difference between accuracy and confidence

Group 1
Dataset Model Mo ool  Highest confidence group
eeo0o0000 °©0o
ee0oo0000 Group 2
0000000 oo o
0000000 "¢ ¢ ¢| Second highest confidence group

@ :Data point

N :Number of data

Lowest confidence group

|Acc(G1)-Conf(G1)|

IAcc(G2)-Conf(G2)]

|Acc(G15)-Conf(G15)|

24



l Paper review (1)

An empirical study into what matters for calibrating VL.Ms, 2024, ICML

« Evaluation: expected calibration error (ECE)

» Difference between accuracy and confidence

Group 1
Dataset Model Jo ool  Highest confidence group
XXxxxx 2220 |Acc(G1)-Conf(G1)|
::: :::: | | G.ro.uE 2 Expected calibration error (ECE)
0000006 »@ ¢ ¢| Second highest confidence group Gy |
] |Acc(GZ)—‘Conf(GZ)| Z},le T |Acc(Gy,) — Conf(Gy)|
@ :Data point . .
N :Number of data Gr.ogp.15
*00 Lowest confidence group |

|Acc(G15)-Conf(G15)|
25



l Paper review (1)

An empirical study into what matters for calibrating VL.Ms, 2024, ICML

1. Before calibration, VLMs have similar or worse ECE compared to ImageNet-trained models.

2. After temperature scaling, VLM calibration significantly improves (average ECE reduced to ~0.05).

3. Stable calibration performance under distribution shifts.

® Vision-language models * ImageNet models

Target: ID-Test Target: ImageNet-R Target: ImageNet-S
Before calibration After calibration o Before calibration o After calibration o Before calibration o After calibration
0.3 e 0.3 ‘
0.3 - 0.3 0.3 * 0.3
6 0.2 . - 0.2 o . . ] o 02 . . %_ J 02
i % . . . es e
0.1 IR S L 0.1 -4 0.1 B . 0.1 e Tl
. . R '™ .r-‘.«--ic;v;,: . f " _l'.',' S . e e ._,,-,.o'-;-".".-'-""'r1 . s " ' ! ‘ ‘. * “‘:'asn s ,5'.-'«
0% 20%  40%  60%  80% b 20%  40%  60% 80% OO 20%  40%  60%  80% 0.0 20%  40% 60%  B0% 0-00% 20% 40% 60% D-00% 20% 40% 60%
Classification accuracy Classification accuracy Classification accuracy

Figure 1. Comparing the calibration performance of ImageNet-trained models and VLMs.
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Phase 1: main training Phase 2: post-hoc recalibration training

Logit Scaled logit

Learning ——
L] odel “@ .» »E ivide
l Paper review (1) - = ol

An empirical study into what matters for calibrating VL.Ms, 2024, ICML

1. VLMs can effectively be calibrated even if the calibration set has different labels from the target test set.

2. High correlation (R?, Spearman’s p > 0.90) between calibrated probabilities and actual accuracy, even with
label mismatches.

No calibration Calibrated an CIFAR-10-Val Calibrated on DomainMet-Real
0.20 — 15K B
R* = 0.606 RY = 0939 R? = 0965
E‘ %] o = 0BT s P =0950 et BrEd P o= 0871
=| 0.1% ; .
E H Bi% BN Girss
[ 17 ]
% Hoao ! E )
E ‘E a0% ren 5
= 0.0% —— cﬁ .
FY "
1 F L s 20%
T _ 1_|_ o
0.00 - -
nacalibration CIFAR-10-Val Domainset-Real . 4 -6 08 n.2 0.4 e o= e 0.z o4 0.6 .8
Calibration dataset average prediction probability
o3 51 R? = 0621 ’ ] g2 = ponl -
z e p =0.930 H,-/, i
E 5 s E0% I’_‘;"-J
L (% | H . .a_"-l _-__..
(N0} a
a E 1 —|_ E 405 A0 J-__‘.-"’f'
o = .
E @l ry a
- J_ E e
1 z
oo ""' - . o
no calbration  CIFAR-10-Val DomainMet-Real oo n.z Bl o6 o8 . ox o o6 os
Calibration dataset average prediction probability

Figure 2. Adaptability of VLMs to different calibration label sets. 27



l Paper review (1)

An empirical study into what matters for calibrating VL.Ms, 2024, ICML

1. VLM calibration requires very few examples (~40-50 samples) to reach optimal calibration performance

2. Effective even in high-class-count scenarios (e.g., DomainNet(=345), ImageNet(=1000))

0.32 *

ImageNet-Val = ImageNet-V2-A ImageNet-Val = ImageNet-S
*
% # 0.241 * % L S

bt
Ll 0.12 "
O L. "
W 609 H—J * 0.16 .L T

. 0.06 1 l - - * 0.08 T
Blue: VLM models . R % |

$%%%é+%%

S 10 20 30 40 50 10 400 AN 5 10 20 20 40 50 10 400 AN

Green: Non-VLM models Number of Images in calibration set

CIFAR-10 — CINIC DomainNet-Real = DomainNet-Sketch
0181 +# e

Line: Before calibration L 036{ %
4 %* - N

W

-
4 | 027 ooy
b

0.09 0.18 +#

i &
AR LT T IR L P,

5 10 20 30 20 50 10 100 pib 5 10 720 30 40 50 70 400 pb
Number of Images in calibration set




l Paper review (2)

C-tpt: Calibrated test—time prompt tuning for vision—language models via text feature dispersion, 2024, ICLR

* Test-time prompt tuning (TPT) improves CLIP accuracy without labels.

e But: TPT often worsens calibration, leading to overconfident predictions.

a single test image augmented views

confidence selection

E— [ —_—
a0k
Pp(¥|AL (X)) i
= v’ average minH(,)
ninls D P
PP(J-’ {fn(x)) ﬁp X
X " accept X reject
— (L ———— \
-DDDDD- | Djl:‘ : Learnable Parameters
Pp(¥1A(X)) ——

Accuracy (T)

az

an

oa

CLIP . CLIP+ TPT
[ |1 Overconfidence
Ace. (1): 64.6 "1 Ace (1): 673
ECE (1): 2.49 c..] ECE():6.26
]
= 04
g
-
0z 4
ad
04 0.6 0.8 1.0 an 0z o4 0.8 ¥ 1.0
Confidence Confidence
(a) Observation 1
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l Paper review (2)

C-tpt: Calibrated test—time prompt tuning for vision—language models via text feature dispersion, 2024, ICLR

« Discover that prompt choice strongly influences calibration.

« Well-calibrated prompts show high dispersion in class-embedded text features.

8 .__E__. _.E__ ___.fé__g._______g_.____ ® Ace: 62.1
1. A photo of a <class> o Qo 4 . v s, ECE: 2.55
. : : @ . * . L, . o Acc: 620
2. A painting of a <class> T S ———— L Celeint s ECE: 194
= : ; 9 . 20l . :
3. A photo of a clean <class> = AL N R ;_':é'!“:';f_- .. |ehests
d 1 f | = __i_ __E__ [ W M .‘-.t % ‘“1‘ .... I-. T

4. A drawing of a <class> F : st o’ ¥ e e @ | Acei620
g‘ L T e W" -~ ECE: 8.55
3 BT S S N

80. A sketch of a <class> ; — " ,

50 =3 L] EE T -1 5 o 5 L

Acenracy (1)
(b) Observation 2 (c¢) Observation 3
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l Paper review (2)

Dispersion « Calibration

C-tpt: Calibrated test—-time prompt tuning for vision—language models via text feature dispersion, 2024, ICLR

« How to measure dispersion in class-embedded text features: Average text feature dispersion (ATFD)

A photo of a dog

~

A photo of a cat

A photo of a horse

A photo of a turtle

L

Text
encoder

_1sK _ 14K 2
* leentroid = Ezkzltk // ATFD = Ezkzllltcentroid - tkll

Text feature space

1
X ATFD ZZ{aZ + b?% + ¢% + d?}
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l Paper review (2)

C-tpt: Calibrated test—time prompt tuning for vision—language models via text feature dispersion, 2024, ICLR

« Empirically observed strong negative correlation between ATFD and ECE (p = —0.7 to — 0.76)

0.75 0.70 4
.
0.70 . .o'l .°.- l
7 re ~.. °® “ 0.65 ‘h .' @ Flowerl02
.9 > 0 4 ‘.. - ” ..
0.65 - + .%. [ ﬁ* W res
- 54 B 0.60 f 2" P
¢ ?.4- +t~ . " L “' »” Cars
0.60 «* CAd o = ¢ » I - P> Caltech101
: $ :}‘;y'»* 5 oy &3 :;
X 0}‘, P ’K LY . @ Foodl0l
0.55 X X P > > 7
X % B W . s » » 0.50 N S T W 8 SUN397
L o %X > .
0.50 e X % ’)‘“ > gk ImageNet
x X .
X 0.45 4
0.45 T
0 2 4 6 8 10 0 2 4 6 8 10
ECE ECE
(a) CLIP-RNS50 (b) CLIP-ViT-B/16

Figure 2: Plot illustrating the correlation between ECE and ATFD for hard prompts that achieve
accuracies within 3% of the highest accuracy observed for each dataset. A notable negative association
is observed for CLIP-RN50 and CLIP-ViT-B/16 across different datasets, with Pearson correlation

coefficients (Freedman et al., 2007) averaging -0.70 and -0.76, respectively.
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l Paper review (2)

C-tpt: Calibrated test—time prompt tuning for vision—language models via text feature dispersion, 2024, ICLR

* Proposed Method = Maximizing text feature dispersion during TPT

Calibrated Prompt Tuning

R L LR LT T LT,

: B | Mosimiasion .
(L) LTl — (e S min|Lrpr + A - (—ATFD)]
Pt o Inference 14

Jointly optimize for accuracy (TPT) and calibration (via ATFD)
No labeled data needed
A = 50 (tunable)

--------- > Back Propagation -
ED: Learnable Parameters

7
_. Image Encoder’ ~I | E.:] ¢ EI:'

Figure 3: Illustration of the Calibrated Test-time Prompt Tuning (C-TPT) for zero-shot image
classification using CLIP. C-TPT improves calibration by optimizing the prompt so that it maximizes
the Average Text Feature Dispersion (ATFD) during test-time prompt tuning.
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l Paper review (2)

C-tpt: Calibrated test—-time prompt tuning for vision—language models via text feature dispersion, 2024, ICLR

Table 1: Fine-Grained Classification. We present the results of CLIP-RN50 and CLIP-ViT-B/16.
For each setting, we report the Ace. (1) and ECE (]) of the initialization, after applying TPT, and

after jointly employing TPT and our proposed C-TPT—the values highlighted in bold signify the I
best ECE achieved after test-time prompt tuning. Std. is reported in Appendix * EXp erime ntal resu ItS
« 11 datasets (e.g., OxfordPets, Flowers 102,...)

S = o~ B = @
Z = O I~ - < g0 .
5 2 . 23 § 2 o 2 F E « TPT increases ECE
Eﬁﬁaaoigssos
Method °c s 0 F E z . 2 = « C-TPT reduces ECE by 47-56%
CLIP-RNSO Acc. [58.1 85.8 83.8 557 61.0 74.0 15.6 58.6 40.0 23.7 584 559
HudPrompt  ECE |12.09 433 591 470 3.19 3.11 645 3.54 9.91 154 3.05 5.61 on average
_+TFT -~ Acc.|[60.7 87.0 84.5 58.0 62.5 749 17.0 61.1 41.5 283 595 57.7 .
Harderomp! ECE || 114 504 3.65 3.76 13.4 525 16.1 9.24 257 22.5 12.4 117  Accuracy Is mostly preserved
Acc. 602 869 84.1 565 652 747 17.0 61.0 422 27.8 59.7 57.8 s
TP hurapromp*CTPT - pop 13,01 2,07 277 194 414 186 107 2.93 19.8 151 353 6.20 (within ~19%)
CLIP-RNSOmns Acc.|[59.7 87.1 829 556 60.5 75.6 164 602 410 29.3 59.8 57.1
wenble  ECE ||5.15 6.43 6.46 7.34 5.02 504 392 6.19 4.54 7.70 355 558
_-I-TFTE;TMC_ ~ Acc.[[61.1 874 832 592 614 762 179 62.0 42.8 284 60.2 582

+TPTEnscmhlc+C -TPT

CLIP-ViT-B/16HuraPrompt

+TPTHMdpmmpl +C-TPT

CLIP-ViT-B/16gsembic

FTPTensenue+C-TPT  pop || 448 314 1.54 1.84 577 238 6.40 3.09 137 549 3.04 4.62 34




l Paper review (2)

C-tpt: Calibrated test—-time prompt tuning for vision—language models via text feature dispersion, 2024, ICLR

Table 2: Natural Distribution Shifts. We report the Acc. (1) and ECE (]) of the initialization, after
applying TPT, and after jointly employing TPT and our proposed C-TPT—the values highlighted in
bold signify the best ECE achieved after test-time prompt tuning. Std. is reported in Appendix

Method ImageNet-A ImageNet-V2 ImageNet-R ImageNet-Sketch Average
Acc. 217 51.4 56.0 333 40.6
(CLPRNSOuaroms — pep | 213 333 207 315 746 _
TP Acc. 352 54.6 58.9 35.1 435
. e ECE| 310 131 918 137 16.7
Acc. 234 547 580 351 i3
FTPTHuraprompHC-TPT g 25.4 8.58 4.57 9.70 12.1
Acc. 227 525 57.9 347 42.0
(CLIPRNOwenie peg | 170 268 564 109 906
TPT Acc, 6.9 55.0 60.4 356 445
o Foemble ECE) 291 127 750 140 158
Acc. 25.6 548 597 357 440
+TPTensembic+C-TPT " pp 27.0 9.84 517 12.2 13.6
. Acc. 478 60.8 74.0 46.1 572
(CLIPVITBMGnwaromee gg | 861 301 358 495 504
Acc. 526 63.0 76.7 475 500
TP Tairronye ECE| 164 111 43 161 120
Acc. 516 627 76.0 479 596
+TPTharaprompt C-TPT " pop 8.16 6.23 1.54 7.35 5.82
) Acc. 50.0 62.0 745 6.0 584
(CLIP-VITBMomene - g | 885 301 285 970 610 _
TP Acc, 542 3.9 7872 85 612
L emee ECE | | 135 1z 364 13 10.9
Acc. 539 63.4 780 i85 607
TP et +C-TPT — pp 10.9 8.38 1.40 12.6 8.32

« Experimental results
« Datasets: ImageNet-A, V2, R, Sketch
« C-TPT again reduces ECE
across data shifts
« Up to 52% ECE reduction
« Accuracy maintained vs. TPT
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Paper review (2)

C-tpt: Calibrated test—time prompt tuning for vision—language models via text feature dispersion, 2024, ICLR

« Compared to post-hoc TPT+TS (based on ImageNet):

« C-TPT consistently achieves better ECE
* No labeled data needed (unlike temperature scaling)

7.1 COMPARISON WITH PREVIOUS CALIBRATION METHOD

B v [ 1P, [l TPT+ CTPT (Ours) Average

20 4

10 4

ECE (])

b

a8 A » 3 . ge‘ 3
- ad AN u i N~ 2 D
oo < ~¢ o e . o y

N
o o N o7 (© ¢
A\ \6“}% \6\‘3% \6\9‘

& : . \ O
c,‘b\‘e ?c“ CB‘ q\a"w‘ Q'B“b\ s 5\5"'\ v

Figure 4: Comparison of calibration error between TPT, temperature-scaled TPT (TPT epp), and
the joint use of our proposed C-TPT (TPT+C-TPT). Results are based on CLIP-ViT-B/16.
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. Conclusion

« VLM'’s calibration matters: it enables safer and more trustworthy predictions

« Empirical study (ICML 2024)

« Temperature scaling effectively improves calibration.
» Works across distribution and label shifts with a few samples.

. C-TPT (ICLR 2024)

* Improves test-time calibration without labeled data.
« Uses ATFD (text feature dispersion) as a calibration guide.
* Reduces ECE by up to 50%, accuracy remains stable.
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