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Abstract

Humans and animals learn much better when
the examples are not randomly presented but
organized in a meaningful order which illus-
trates gradually more concepts, and gradu-
ally more complex ones. Here, we formal-
ize such training strategies in the context
of machine learning. and call them “curricu-
lum learning”. In the context of recent re-
search studying the difficulty of training in
the presence of non-convex training criteria
(for deep deterministic and stochastic nen-
ral networks), we explore curriculum learn-
ing in various set-ups. The experiments show
that significant improvements in generaliza-
tion can be achieved. We hypothesize that
curriculum learning has both an effect on the
speed of convergence of the training process
to a minimum and, in the case of non-convex
criteria. on the quality of the local minima
obtained: curriculum learning can be seen
as a particular form of continuation method
(a general strategy for global optimization of
non-convex functions).

training and remarkably increase the speed at which
learning can occur. This idea is routinely exploited in
animal training where it is called shaping (Skinner,
1958; Peterson, 2004: Krueger & Dayan, 2009).

Previous research (Elman, 1993; Rohde & Plaut, 1999;
Krueger & Dayan, 2009) at the intersection of cogni-
tive science and machine learning has raised the follow-
ing question: can machine learning algorithms benefit
from a similar training strategy? The idea of training a
learning machine with a curriculum can be traced back
at least to Elman (1993). The basic idea is to stari
small, learn easier aspects of the task or easier sub-
tasks, and then gradually increase the difficulty level.
The experimental results, based on learning a simple
grammar with a recurrent network (Elman, 1993), sug-
gested that successful learning of grammatical struc-
ture depends, not on innate knowledge of grammar,
but on starting with a limited architecture that is at
first quite restricted in complexity., but then expands
its resources gradually as it learns. Such conclusions
are important for developmental psychology, becanse
they illustrate the adaptive value of starting, as hu-
man infants do, with a simpler initial state, and then
building on that to develop more and more sophis-

N

Data Mining
Quality Analytics



Curriculum Learning

oli+] 0F0[C]0f

«  COEVHE B2, HiX| HRI= L0M ofs - 22 7ISA| EHI0IE

- Predicted output
g

_ Target output

Whole Dataset

N
1

Deep Neural Net minimize L(0) = — > L;(0)
72

Ok+1 = O —nVL(O)
Update Weights

D J \""
Data Mining
o“‘ Quality Analytics 4



Curriculum Learning

4] 0t0||0f

* = -

. HOEHEZS, X
. ZhHiRE= B AME B

v UEFO| Bl DY B1
Rl L0 s

=]

Hoo

-—r’ O
~ A —
—
Whole Dataset s
o
'
OF=—
'
GoEP}H2 ==
HHxlE@ELrTma Mini-Batch
Zp A= 2
ZtHIO|EiE2] el

- RV ISAI o=

‘ Predicted output
L

_ Target output

Deep Neural Net

HoteNZ elks
A0 Tt 1247 g

M
1
minimize L(0) = MZ L;(8)
i=1

Ok+1 = O —VL(O)

Update Weights

x Data Mining
b Quality Analytics




Curriculum Learning

4] 0t0||0f

* = -

. HOEHEZS, X
. ZhHiRE= B AME B

v UEFO| Bl DY B1
Rl L0 s

=]

Hoo

-— Ogm
~ A —
-_—
Whole Dataset s
o
'
OF=—
'
GoEP}H2 ==
HHxlE@ELrTma Mini-Batch
Zp A= 2
ZtHIO|EiE2] el

- RV ISAI o=

‘ Predicted output
L

_ Target output

Deep Neural Net

HoteNZ elks
A0 Tt 1247 g

M
1
minimize L(0) = MZ L;(8)
i=1

Ok+1 = O —VL(O)

Update Weights

x Data Mining
b Quality Analytics




Curriculum Learning

4] 0t0||0f

* = -

. HOEHEZS, X
. ZhHiRE= B AME B

v UEFO| Bl DY B1
Rl L0 s

=]

Hoo

-— Ogm
~ A —
—
Whole Dataset s
o
'
OF=—
'
GoEP}H2 ==
HHxlE@ELrTma Mini-Batch
Zp A= 2
ZtHIO|EiE2] el

- RV ISAI o=

‘ Predicted output
L

_ Target output

Deep Neural Net

HoteNZ elks
A0 Tt 1247 g

M
1
minimize L(0) = MZ L;(8)
i=1

Ok+1 = O —VL(O)

Update Weights

x Data Mining
b Quality Analytics




Curriculum Learning

4] 0t0||0f

* = -

. HOEHEZS, X
. ZhHiRE= B AME B

v UEFO| Bl DY B1
Rl L0 s

=]

Hoo

-— Ogm
~ A —
—
Whole Dataset s
o
'
P
'
GoEP}H2 ==
HHxlE@ELrTma Mini-Batch
Zp A= 2
ZtHIO|EiE2] el

- RV ISAI o=

‘ Predicted output
L

_ Target output

Deep Neural Net

HoteNZ elks
A0 Tt 1247 g

M
1
minimize L(0) = MZ L;(8)
i=1

Ok+1 = O —VL(O)

Update Weights

x Data Mining
b Quality Analytics




Curriculum Learning
84| 0}0|C|0f
o 4R MBHE| SRS
- QRIOfskE DEMAS B : 22 JFE] sigoll, XIS 02 27K &5
«  HE ST 3 3 ocal minimall| X [= Zakd 2
- ZE5eEHEE 2EXOz sigolt]| Mds ditee
‘ Predicted output
8
Target output

—

1
minimize L(0) = MZ L;(8)
i=1

>
—
=)

Whole Dataset
I\/I|n| Batch

LO| 20| (2} M=

=LA
ok H

—nVL(0)

Deep Neural Net

Ork+1 = Ok

Update Weights

(U0

Q‘ Data Mining
b Quality Analytics




Curriculum Learning

O=Z 042 epochs S5
2 02§ epochs Sk

‘ Predicted output
L
_ Target output

oli2 010|C|0f
S M2 MEBE SRS
«  QRIOeks DENAS B4 #2 JRH SkSolll, XIS 022 J77IK
o HE A5 S 3 ocal minimaf| HEXf= 288 24
- B PEES SN0 ofgol] Mds HatEie
=R "._@' nipSh
ol HO|V | J2 HESDO
> switch epoch 0%, 85 HO|=7H 2 MBS
-_— e
_— |
— @h"__, s M
Whole Dataset s
——
—
@h-d OlHRM=
— Deep Neural Net
—
Mini—Batch

JoII

10| 0] k2t

x Data Mining
b Quality Analytics

M
1
minimize L(0) = MZ L;(8)
i=1

Ok+1 = O —VL(O)

Update Weights

10



Curriculum Learning

OIEXH H{Z

< Continuation methods (Allgower & Georg, 1980)
«  ZXAI0] non—convexSt ZZAIAQ] global aptimum0il ZARSHSHS SH= A XSHEIHE
« 72 ENHE 2ZARBIH global picture Z7| : SXA19] smooth version(convex)s 30t E|&15}
o FEIXoZ =XISHIH|IY Z7] : highly smoothed version®iA] less smoothed version7EK| =X Zigl

¢ A cumculum as a continuation method

712 ZHIZ 2ALGI0 global picture E7 [ TREO= SRoHCHIY &I
Smooth version Less Smoothed version REMOZ Z0{0} 52 XAl

Co(6) » C,(6) » » C1(0)

0
1o
o>

AlO OO AHZ=
T2 HETHSES A2 S

o« B o BB ore

Step A OICHHAO |2 FRHE0] Z1E 2XAI9| global optimum| 225! GHE ZH= HIAl

Q‘ Data Mining
b Quality Analytics

1M



Curriculum Learning

O[=H tiE

% Continuation methods (Allgower & Georg, 1980)
«  FXA0[ non—convexst ZZ1HIA2] global optimumi| ZAFSH SHE S= Z[& ot HIEHE
« 7R 2N 2ZARBIH global picture £7| : EX4412] smooth version(convex)ys 20t &5t
o FEIXoZ =XISHIH|IY Z7] : highly smoothed version®iA] less smoothed version7EK| =X Zigl

A cumculum as a continuation method

Step 1 0 < A < 1 (artingfom A = 0andendingatA = 1)
WH SESHAPRIN - S =l
_ e FEROR B0} 5=
Q;L < Wy (2)P(z) Vz : T-S-’.“:'.*’é '|°*¢ 14,
VIE7EE, BRI 2 MES ok
Entropy &7t : H(Q) < H(Qpe) V€ >0
Final Step GIOIEIHIRB7} : Waye(2) = Wa(2) Yz Ve > 0

Ql = P(Z) Vz i 40 S Bl
AEMOD SRS} 5H= : SAL R HES —:I:lol'ozlA
Target Training Distrioution 8k Target Training Distribution k&

Data Mining
..:.‘ Quoality Analytics 12



Curriculum Learning

O[=H tiE

% Continuation methods (Allgower & Georg, 1980)
«  FXA0[ non—convexst ZZ1HIA2] global optimumi| ZAFSH SHE S= Z[& ot HIEHE
« 7R 2N 2ZARBIH global picture £7| : EX4412] smooth version(convex)ys 20t &5t
o FEIXoZ =XISHIH|IY Z7] : highly smoothed version®iA] less smoothed version7EK| =X Zigl

A cumculum as a continuation method

AH| A0 M= 2 Step2] 12 7
(RIRI IO |EIS +12 MZ/0f2i2 M2 2582 )

Q : T2 S0t eks

T O=2 1L d

Q1 : TIA| Cllo[EM =ks

2 AHZ0H SRS DRIS £ Sk AR 0|5 FF| C0|E 25 S

PPN
Local Mlnlmum01| = A
D ds e

Data Mining
..:.' Quoality Analytics 13

OI

ol S



Curriculum Learning

»  Experments on shape recognition
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Figure 2. Sample inputs from BasicShapes (top) and
GeomShapes (bottom). Images are shown here with a
higher resolution than the actual dataset (32x32 pixels).
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% Experiments on shape recognition
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Self-Paced Learning for Latent Variable Models

M. Pawan Kumar  Ben Packer  Daphne Koller
Computer Science Department
Stanford University
{pawan,bpacker, koller}i@cs.stanford. edu

Abstract

Latent variable models are a powerful tool for addressing several tasks in machine
learning. However, the algorithms for leaming the parameters of latent variable
models are prone to getting stuck in a bad local optimum. To alleviate this prob-
lem, we build on the intuition that, rather than considering all samples simulta-
neously, the algorithm should be presented with the training data in a meaningful
order that facilitates learning. The order of the samples is determined by how
easy they are. The main challenge is that typically we are not provided with a
readily computable measure of the easiness of samples. We address this issue
by proposing a novel, iterative self-paced learning algorithm where each iteration
simultaneously selects easy samples and learns a new parameter vector. The num-
ber of samples selected is governed by a weight that is annealed until the entire
training data has been considered. We empirically demonstrate that the self-paced
learning algorithm outperforms the state of the art method for leaming a latent
structural $vs on four applications: object localization, noun phrase coreference,
motif finding and handwritten digit recognition.
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Self-Paced Curriculum Learning

Lu Jiang!, Deyu Meng', Qian Zhao'Z, Shiguang Shan'®, Alexander G. Hauptmann'
! School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA, 15217
2 School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China, 710049
# Institute of Computing Technology, Chinese Academy of Sciences, Beijing, P. R. China, 100190

Abstract

Curriculum learning (CL) or self-paced learning (SPL)
represents a recently proposed learning regime inspired
by the learning process of humans and animals that
gradually proceeds from easy o more complex sam-
ples in training. The two methods share a similar con-
ceptual learning paradigm, but differ in specific learn-
ing schemes. In CL, the curriculum is predetermined by
prior knowledge, and remain fixed thereafter. Therefore,
this type of method heavily relies on the gquality of prior
knowledge while ignoring feedback about the learner.
In SPL, the curriculum is dynamically determined to ad-
just to the learning pace of the leaner. However, SPL s
unable to deal with prior knowledge, rendering it prone
to overfitting. In this paper, we discover the missing link
between CL and SPL, and propose a unified framework
named self-paced curriculum leaning (SPCL). SPCL
is formulated as a concise oplimization problem that
takes into account both prior knowledge known before
training and the learning progress during training. In
comparison to human education, SPCL is analogous to
“instructor-student-collaborative™ learning mode, as op-
posed to “instructor-driven”™ in CL or “student-driven”
in SPL. Empirically, we show that the advantage of

SPCL on two tasks.
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between curriculum learning (CL) and self-paced learning
{SPL) lies in the derivation of the curriculum. In CL, the cur-
riculum is assumed to be given by an oracle beforehand, and
remains fixed thereafter. In SPL, the curriculum is dynami-
cally generated by the learner itself, according to what the
learner has already learned.

The advantage of CL includes the flexibility to incorpo-
rate prior knowledge from various sources. Its drawback
stems from the fact that the curriculum design 1s determined
independently of the subsequent learning, which may result
in inconsistency between the fixed curriculum and the dy-
namically learned models. From the optimization perspec-
tive, since the learning proceeds iteratively, there is no guar-
antee that the predetermined curriculum can even lead to
a converged solution. SPL, on the other hand, formulates
the learning problem as a concise biconvex problem, where
the curriculum design is embedded and jointly learned with
model parameters. Therefore, the learned model is consis-
tent. However, SPL is limited in incorporating prior knowl-
edge into learning, rendering it prone to overfitting. Ignoring
prior knowledge is less reasonable when reliable prior infor-
mation is available. Since both methods have their advan-
tages, it is difficult to judge which one is better in practice.
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Figure 1: Comparison of feasible regions in SPL and SPCL.
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MentorNet: Learning Data-Driven Curriculum
for Very Deep Neural Networks on Corrupted Labels

Lu Jiang' Zhengyuan Zhou® Thomas Leung' Li-JiaLi' Li Fei-Fei'?

Abstract

Recent deep networks are capable of memoriz-
ing the entire data even when the labels are com-
pletely random. To overcome the overfitting on
corrupted labels, we propose a novel technique
of learning another neural network, called Men-
torNet, to supervise the training of the base deep
networks, namely, StudentNet. During training,
MentorNet provides a curriculum (sample weight-
ing scheme) for StudentNet to focus on the sample
the label of which is probably correct. Unlike the
existing curriculum that is usually predefined by
human experts, MentorNet learns a data-driven
curriculum dynamically with StudentNet. Ex-
perimental results demonstrate that our approach
can significantly improve the generalization per-
formance of deep networks trained on corrupted
training data. Notably, to the best of our knowl-
edge, we achieve the best-published result on We-
bWision, a large benchmark containing 2.2 million
images of real-world noisy labels. The code are at

https://github.com/google/mentornet.

deep CNNs, so as to improve generalization performance
on the clean test data. Although learning models on weakly
labeled data might not be novel, improving deep CNNs on
corrupted labels is clearly an under-studied problem and
worthy of exploration, as deep CNNs are more prone to
overfitting and memorizing corrupted labels (Zhang et al.,
2017a). To address this issue, we focus on training very deep
CMNNs from scratch, such as resnet-101 (He et al., 2016) or
inception-resnet (Szegedy et al., 2017) which has a few
hundred layers and orders-of-magnitude more parameters
than the number of training samples. These networks can
achieve the state-of-the-art result but perform poorly when
trained on corrupted labels.

Inspired by the recent success of Curriculum Learning (CL),
this paper tackles this problem using CL (Bengio et al.,
2009). a learning paradigm inspired by the cognitive process
of human and animals, in which a model is learned grad-
ually using samples ordered in a meaningful sequence. A
curriculum specifies a scheme under which training samples
will be gradually learned. CL has successfully improved the
performance on a variety of problems. In our problem, our
intuition is that a curriculum, similar to its role in education,

31
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A% - Noisy CIFAR-10 & CIFAR-100
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Table 2. Comparison of validation accuracy on CIFAR-10 and CIFAR-100 under different noise fractions.

Resnet-101 StudentNet Inception StudentNet
CIFAR-100 CIFAR-10 CIFAR-100 CIFAR-10
Method 02 04 08 |02 04 08|02 04 08|02 04 038
FullModel 060 045 008 | 082 0.69 0.18 043 038 0.15 (076 0.73 042
Forgetting 061 044 0.16 | 0.78 0.63 035|042 037 0.17 [ 076 0.71 044
Self-paced 0.70 055 0.13 | 089 085 028 | 044 038 0.14 | 080 0.74 0.33
Focal Loss 059 044 0.09 079 065 028|043 038 0.15(077 0.74 040
Reed Soft 062 046 008 | 081 063 0.18 042 039 0.12 078 0.73 0.39
MentorNet PD | 0.72 0.56 0.14 | 091 077 033|044 039 0.16 | 079 0.74 0.44
MentorNet DD | 0.73 0.68 035 | 092 089 049 | 046 041 020|079 0.76 0.46
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A% - Noisy CIFAR-10 & CIFAR-100
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Conclusion

o7 S8 U A=

< E%2 0§74% 212 (Corrupted samples)0| EXH5H= A& X
*  Robust Curriculum Leaming: from clean label detection to noisy label seff-comection. ((CLR 2021)
*  Robust Early-Leaming: Hindering The Memorization of Noisy Labels. (CLR 2021)

L)

R/
0’0

SdA =1 ZAH0 HE
Dynamic Curriculum Leaming for Imbalanced Data Classification. (CCV 2019)
+  Semi—Supenvised Semantic Segmentation via Dynamic Self-Training and Class—Balanced Curriculum. @rXiv)

* 22 ZoleHs SOl EYs| T
*  Bvolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Leaming. (ICLR 2020)
*  Self-Paced Deep Reinforcement Leaming. (NeurlPS 2020)
*  Self-Paced Context Evaluation for Contextual Reinforcement Leaming ((CML 2021)
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