AmbientGAN: Generative models
from lossy measurements
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. Motivation

“How can we train our generative models with
partial, noisy observations?”

Why do we care?

In many settings, it is expensive or even impossible to obtain fully-observed
samples, but economical to obtain partial, noisy samples
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. This paper proposes

« AmbientGAN: train the discriminator not on the raw data domain
but on the measurement domain

« Propose the method to train the generative model with a noisy,
corrupted, or missing data

« Prove that it is theoretically possible to recover the original true
data distribution even though the measurement process is not
invertible




. This paper proposes (preview)

Figure 2: (Left) Samples of lossy measurements used for training. Samples produced by (middle) a
baseline that trains from inpainted images, and (right) our model.



. This paper proposes (preview)

(a) (left) Samples of lossy measurements. Each
image is a blurred noisy version of the original.
Samples produced by (middle) a baseline that uses
Wiener deconvolution, and (right) our model.
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(b) Samples produced by our model trained from two
1D projections of each image. On left, the training data
does not include the angle of the projections, so it can-
not identify orientation or chirality. On right, the train-
ing data includes the angle.



. Generative Adversarial Nets (review)

Diagram of Standard GAN

Generative Adversarial Nets (GANs) are composed of two components
The main idea behind a GANs are to have two competing neural network

model

« Generator(G): to create natural looking images that are similar to the original data

distribution

« Discriminator(D): determining whether a given image looks natural or looks like it has
been artificially created.
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<Frameworks of GANs>



. Generative Adversarial Nets (review)

Diagram of Standard GAN

Generative Adversarial Nets (GANs) are composed of two components
The main idea behind a GANs are to have two competing neural network

model

Generator(G): to create natural looking images that are similar to the original data
distribution

Discriminator(D): determining whether a given image looks natural or looks like it has
been artificially created.

minmaxV(D, G) = Ex—py,al0gD ()] + Ezop,(z) [log(1 — D(G(2))]

<Objective function of GANs>



. Generative Adversarial Nets (review)

Diagram of Standard GAN

Generative Adversarial Nets (GANs) are composed of two components
The main idea behind a GANs are to have two competing neural network

model
« Generator(G): to create natural looking images that are similar to the original data
distribution
« Discriminator(D): determining whether a given image looks natural or looks like it has
been artificially created.
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. Limitation of GAN

 Training Stability
« Forgetting problem

« Requires Good (of fully observed) Training samples



. Limitation of GAN

 Training Stability




. Limitation of GAN

Forgetting problem




. Limitation of GAN

« Requires Good (of fully observed) Training samples

« To train the generator, we need a lot of good images
« In many settings, it is expensive or even impossible to obtain fully-observed samples,
but economical to obtain partial, noisy samples



. Limitation of GAN

Requires Good (of fully observed) Training samples
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Limitation of GAN

« Requires Good (of fully observed) Training samples

[Block-pixels]



. AmbientGAN framework

Fake Measurement Generative Process
X, =G(Z) Z ~p,

O~ pg

Y, = fo(X,) = fo(G(D))

Real Measurement Generative Process

X ~px
O ~ py

Y = fo(X) ~p;
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. AmbientGAN framework

Fake Measurement Generative Process X9
Z —
Xg=0G(2) Z ~ Py -
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SR = D
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. Dataset
Real Measurement Generative Process (Y5 Yo Yoo - ¥, } L]
YI’
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min max Eerer,[(D(Yr))] t Ez-p,0~pg [(1 -D (fH(G(Z))))]
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Y_fB(X) py Z~pz ,®~p9,and YT~UTll'f{y1;y2; ---;yS}



. AmbientGAN framework

Fake Measurement Generative Process
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. Measurement

« Standard Compressed Sensing
“Compressible” = “Sparse”

« Want to estimate x fromy = Ax + n, for A € R™"




. Measurement
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Observed Unknown Unknown point Unknown
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. Measurement function

Block-Pixels: with p, make image pixel O

« Convolve + Noise: Gaussian kernel blur + add random Gaussian noise
* Block-Patch: make k x k patch O

« Keep-Patch: make 0 except k x k patch

« Extract-Patch: use k x k patch as input

« Pad-Rotate-Project: zero padding + rotate + vertical 1D projection

- Pad-Rotate-Project-6: Pad-Rotate-Project and include 8 as an additional
information for the measurement



. Dataset and Model Architectures

MNIST
« Conditional DCGAN
- WGAN

 CelebA
« DCGAN

« CIFAR-10
« ACGAN

» For 2D measurement, Block-Pixels, Block-Patch, Keep-Patch, Extract-Patch and
Convolve + Noise, conventional Discriminator is used

« For 1D measurement, Pad-Rotate-Project, Pad-Rotate-theta, fully connected
Discriminator is used



. Baselines

« IGNORE: Learn generative model based on raw measurement

« Unmeasure: Trying to recover the measurements with conventional
algorithm

» Block-Pixels — blur the pixel to fill the zero pixel

« Convolve+Noise — Winder deconvolution Method

« Block-Patch — Navier Stroke based inpainting method to fill the zero
pixel



. Experimental result

Figure 2: (Left) Samples of lossy measurements used for training. Samples produced by (middle) a
baseline that trains from inpainted images, and (right) our model.



. Experimental result

(a) (left) Samples of lossy measurements. Each
image is a blurred noisy version of the original.
Samples produced by (middle) a baseline that uses
Wiener deconvolution, and (right) our model.
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(b) Samples produced by our model trained from two
1D projections of each image. On left, the training data
does not include the angle of the projections, so it can-
not identify orientation or chirality. On right, the train-
ing data includes the angle.



. Experimental result

Figure 4: Results with Block-Pixels on celebA. (left) Samples of lossy measurements. Each pixel is
blocked independently with probability p = 0.95. Samples produced by (middle) unmeasure-blur
baseline, and (right) our model.

(b) Samples produced by our
model with Pad-Rotate-Project-6
measurements.

(a) (left) Samples of lossy measurements. All except a randomly cho-
sen 32 x 32 patch is set to zero. (right) Samples produced by our model.



. Experimental result

Figure 6: Results with Block-Pixels on CIFAR-10. (left) Samples of lossy measurements. Each pixel

is blocked independently with probability p = 0.8. Samples produced by (middle) unmeasure-blur
baseline, and (right) our model.



. Experimental result

g

0 S

& W
R GNP N |

RV N D e (D

-,

P QoG- L&

>4
iy
v

L

0w\ oL L,

= (&
oA NANN

DAY rO
DL NR DOO

D Q- — w0
WD~ DOHVY ROV
No~gYy o\

QW N W) vy OO~

(a) (left) Samples of lossy measurements. All except | (b) (left) Samples of lossy measurements. A ran-
a randomly chosen 14 x 14 patch is set to zero. (right) | domly chosen 14 x 14 patch is extracted. (right) Sam-
Samples produced by the our model. ples produced by our model.



Experimental result
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Figure 8: Quantitative results on CIFAR-10 with ACWGANGP, Block-Pixels measurement. (left)
Inception score vs blocking probability p. (right) Inception score vs training iteration with darkness
proportional to 1 — p. Vertical bars indicate 95% confidence intervals.



. Conclusion

« It is possible to train the generator without the fully-observed data

« Empirically, it is possible to recover the good data distribution even
though the measurement process is not clearly known.

« Possible Applications: OCR, Medical image, etc..
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