Understanding
Deep Generative Models

2018. 01. 04
DMQA Lab Seminar

Deep Generative Models

Generative Models

Generative models - try to learn data generating process

Motivating example: latent Dirichlet allocation

Topics

Documents

Topic proportions and
assignments

_'/'— Hose many o

iy qu;.'l. 1t md. ut the genot

hese, PWO LM fvsieg hk‘!‘\‘ i

life 0_02 tary veews of the Pasic eenes nee
evolve 0.01 Qe resvarch teans, using comy
= !u-ln‘ e an\n (AR |
organism 0.01 thirt toke's SRS < 11y b s
e just 230 wenes l\l!'nllhu. arhies

w0 sunple pansite and oty
mated that for this organism, |

SO0 genes are plenty o dothe |

does anjing DISIN ey

Jdifterenr appraches proscsstad comp

roguieed o mere 128 ¢ The
f other reseuschier mappad wenes 7
/

gene 0.04
Sl Seeking Life’s Bare (Genetic) Necessities
e COLD SPRING HARBOR, NEW YORK— “ure not all thar far apar,” wopecially m

comparison to the 73.000 v the hu
e Imeeting ;

thesically L mversity i Si
leniens S\
leuk for B < av amswer msay be oz than jos St
rer maly nnbers ARy

concludad
radneyd with

maae f

ST \J “Heo iy I o way of ergmane

sthieforms any newly segience. " explains
— Arcady Mo ‘u-l i, o coanpetationilao
lecular Brokogist ar the Natiagg! Center
\ for Bt--h\lnh‘:uu\ Enformazion UGB
Nawmpp iy ' t + .
Senora in Bethesda, Marvhand, Comgurnng oy
1700 geres

L

Sinpplno down, ¢ 202 PO
mate ol the rmmum nwdom ard J‘)_le"il QENOMes

yiolds an osii-

o I3 MAY 1o

2t tes Siv Anderssoy STy

.
AT, Dt SO v wath o oo g

brain 0.04 ;--l‘-—'v'u' '.h l! »m\rhm: shore 1\
neuron 0.02 £ 100 wunilidn't be enovigh
nerve 0.01 Although the suw lh «don’t
S o |l\|n;ru.u\ thuse prodictivn
\—-‘/—- * Gencama Magpmng and Seguene
ing, Cold Spring Hatboe, New Yerk
May 810 12
data 0.02 = R
number 0.02 NS
computer 0.01 |
[
e T

b oo

Generative Models with Latent Variables

Introducing latent variable can make problems tractable (e.g. mixture distribution)

Deep Generative Models

0.8
06 r
0.4 r

Planes may hold the secret to safe self-driving cars | 02 |
_02 L
0.4 b
_06 L

08 L
06 r

0.4 r
0.2 r

sample value

left channel

rig'hc annel —— 1

sample value

02 L
04 L
-0.6 F

time (s)

Conventional generative models are not tractable with

high-dimensional complex data

Deep Generative Models

GAN

A 4

f-GAN

\ 4

WGAN

\ 4

EBGAN

A 4

BEGAN

A 4

InfoGAN

\ 4

GMMN

A 4

MMD-GAN

A 4

VAE

A 4

Beta-VAE

GANs, GMMN, and VAE

Generative Adversarial Networks

Training
Data

generator

Neural network
Input = noise (from prior)
Output = random sample (from model distribution)

Fake

discriminator

Neural network
Input - Data (from training and generator)
Output - Probability of real

Generative Adversarial Networks

Real

Generated

Fake data

/ Discriminator

Real data

Generator

Adversarial learning process

Generative Adversarial Networks

z1

z2 z99

z100

0.8642

-0.3331 -0.0322

0.1234

Random Noise
e.g. Uniform (0, 1)
of 100 dimension

(Latent Distribution)

100-dimensional vector
(Latent Variable)

generator

Generating Process of GANSs

Image

Generative Adversarial Networks

Training
Data

Fake

discriminator

Generator trained to fool discriminator
Discriminator trained to distinguish generated from reals

generator

Training of GANs (Alternating Minimization)

Generative Moment Matching Network

Random

noise
generator

Neural network
Input - noise (from prior)
Output - random sample (from model distribution)

Generative Moment Matching Network

z1 z2 z99 z100
0.8642 -0.3331 -0.0322 0.1234
Randpm Noise 100-dimensional vector Image
e.g. Uniform (0, 1) (Latent Variable)
of 100 dimension generator

(Latent Distribution)

Generating Process of GMMN

Generative Moment Matching Network

Training
Data

discriminator

generator

Discriminator in GANs determines how true samples
and generated samples are similar

Fake

Generative Moment Matching Network

Training
Data

Two-Sample Test
(Moment Matching)

Generator is learned to generate
similar samples
(in terms of Moment Matching)

generator

In GMMN, a method called Moment Matching is used to measure
the similarity between true samples and generated samples

Variational Autoencoder

Gaussian Encoder — Gaussian Decoder

sampling

.......... sampling
Image - ~ / - ~ / Image
encoder decoder
q¢(z|x) Po(x|2)
Neural network Neural network
Input > Data Input - Latent vectors
Output - Parameters of Output - Parameters of

the latent distribution (i, c) the model distribution (p, o)

Variational Autoencoder

z1

z2

z99

z100

0.8642

-0.3331 -0.0322

0.1234

100-dimensional vector

(Latent Variable)

decoder
pe (x|2)

Generating Process of VAE

Image

What’s Difterent

o .

H_/

discriminator

Random H—/

noise
generator

GANSs

» G generates samples — G is a transformation (noise to sample)
-> Implicit density / likelihood free
» Random noise distribution does not change (prior)
-> There is no recognition model
* Min-max problem (adversarial)
 Suffers from mode collapse
» Unstable training (hard to balance G and D)
* Try to minimize the discrepancy between data distribution and model distribution
» Possible to utilize discrete random noise

_________] sampling <1l sampling
Image ~" / A ~N - Image
encoder decoder
q¢(z]x) pe(x]2)

Decoder generates samples — decoder is an inference model (latent to parameters)
-> Explicit density

Latent variable distribution changes (posterior)
-> There is a recognition model (encoder)

Minimization (or maximization) problem

Suffers from blurry image (low quality images)

Stable training

Try to maximize model likelihood given data

Hard to impose discrete latent distribution

Generative Adversarial Networks

Generative Adversarial Networks

Generative Adversarial Nets

Ian J. Goodfellow! Jean Pouget-Abadie! Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair: Aaron Courville, Yoshua Bengio®
Département d’informatique et de recherche opérationnelle
Université de Montréal
Montréal, QC H3C 3J7

Abstract

We propose a new framework for estimating generative models via an adversar-
ial process, in which we simultaneously train two models: a generative model &
that captures the data distribution, and a discriminative model D that estimates
the probability that a sample came from the training data rather than ¢&'. The train-
ing procedure for & is to maximize the probability of D2 making a mistake. This
framework corresponds to a minimax two-player game. In the space of arbitrary
functions &' and D, a unique solution exists, with & recovering the training data
distribution and D equal to % everywhere. In the case where G and D are defined
by multilayer perceptrons, the entire system can be trained with backpropagation.
There is no need for any Markov chains or unrolled approximate inference net-
works during either training or generation of samples. Experiments demonstrate
the potential of the framework through qualitative and quantitative evaluation of
the generated samples.

Generative Adversarial Networks

Training
Data

discriminator

Random
noise

generator

Generator tries to make generated samples to be classified as real
Discriminator tries to distinguish generated samples and real data

Fake

Generative Adversarial Networks

min max Eﬂ?NPdata(w) [log D(CE)] T EZNP(Z) [log(l - D(G(Z)))]

0c 0Op

D(x) = Output of D = probability of x is determined to be real by D
G(z) = Output of G = generated sample by G given a latent vector z

0, 0p = neural network parameters of G and D, respectively

Generator tries to make generated samples to be classified as real
Discriminator tries to distinguish generated samples and real data

Generative Adversarial Networks

min max Eﬂ?NPdata(w) [log D(CE)] T EZNP(Z) [log(l - D(G(Z)))]

0c 0Op

ngci;n E.pz)log(l — D(G(z)))]

nggx Eznpaarace) 108 D(2)] + E.p(z [log(1 — D(G(2)))]

Generator tries to make generated samples to be classified as real
Discriminator tries to distinguish generated samples and real data

Generative Adversarial Networks

min | max Eﬂ?NPdata(w) [log D(w)] T EZNP(Z) [log(l - D(G(Z)))]

0c | Op

Proposition 1. For G fixed, the optimal discriminator D 1is

* L Pdata (ZC)
be(@) = @) + po(@)

Generative Adversarial Networks

min max By, () [10g D(x)] + E,p)[log(1l — D(G(2)))]

0c Op

— n;én ECBdiata(x) [log Dzk;' (ZU)] +]Ezwp(z) [log(l T DE(G(Z)))]

= min Ezcwpdata(x) [lOg D*G (CC)] + EJ?NPG (x) [lOg(l - DE (33'))]

Oa
i pdata(x)] | jge. (ZB)]
=min E, . () |log +E,p(2) [lOg
Oc Pdata(7) [pdata(x) + pa (37) pe (@) i pdata(x) + PG (5'3)
= min — log2 + Ewdiata(iﬁ) —log 1 pdata(w) —log2 +]Exwpg (x) llog 1 ba (w)
ge i 2 (pdata(aj) + PG (aj)) i 2 (pdata(x) + pG ([E))
. ata —|_ ata +
= 1%1111 —log 4 + Dk, (pdata Ddat 5 pG) + Dk, (pG Ddat 2 pG)
G

= rrelin — log4 + 2Djg (pdataHpG)
G

G is trained to minimize Jensen-Shannon divergence between data distribution and generator distribution!

Generative Adversarial Networks

Jensen-Shannon Divergence

Pdata

GANSs Structure

G is trained to minimize Jensen-Shannon divergence between data distribution and generator distribution!

Generative Adversarial Networks

What else can we use as a proximity?

Pdata

GANSs Structure

f— GAN

Kullback-Leibler

Reverse Kullback-Leibler
Pearson chi-square
Hellinger

f — divergences Jenson-Shannon

Pdata
GANSs Structure

Generalized GANs from minimizing JS divergence to minimizing an arbitrary f-divergence

f— GAN

f-GAN: Training Generative Neural Samplers using
Variational Divergence Minimization

Sebastian Nowozin Botond Cseke
Machine Intelligence and Perception Group Machine Intelligence and Perception Group
Microsoft Research Microsoft Research
Cambridge, UK Cambridge, UK
Sebastian.Nowozin@microsoft.com botcse@microsoft.com

Ryota Tomioka
Machine Intelligence and Perception Group
Microsoft Research
Cambridge, UK
ryoto@microsoft.com

Abstract

Generative neural samplers are probabilistic models that implement sampling using
feedforward neural networks: they take a random input vector and produce a sample
from a probability distribution defined by the network weights. These models
are expressive and allow efficient computation of samples and derivatives, but
cannot be used for computing likelihoods or for marginalization. The generative-
adversarial training method allows to train such models through the use of an
auxiliary discriminative neural network. We show that the generative-adversarial
approach is a special case of an existing more general variational divergence
estimation approach. We show that any f-divergence can be used for training
generative neural samplers. We discuss the benefits of various choices of divergence
functions on training complexity and the quality of the obtained generative models.

f— GAN

f-divergence

p €T
Dy olla) = [ate)s (%) g, st f(1) =0
Duc () = [o) 1og (%) dr = f(u) = ulogu
Druc. () = | a(a) g (%) dr = f(u) = — logu

s o) = 3 [{pto) 18 (5 3oty) + 08 (e)

—) = —(u+1)log

f— GAN
So, how can we train GANSs with f-divergences?

We want to solve the following problem:

min Dy (pdatal|Pc)
Oc

<= min / palz)f (pda‘?a(””)) da

pc ()

However, we do not know p,,., and pg,

but only have samples drawn from them, respectively

f— GAN

Variational Estimation of f-divergences

Estimating divergence functionals and the likelihood
ratio by convex risk minimization

XuanLong Nguyen Martin J. Wainwright
Dept. of Statistical Science Dept. of Statistics, and Dept. of EECS
Duke University University of California, Berkeley
xuanlong.nguyen@stat.duke.edu wainwrig@stat.berkeley.edu

Michael I. Jordan
Dept. of Statistics, and Dept. of EECS
University of California, Berkeley
jordan@stat.berkeley.edu

Revised April 15, 2009

Technical Report 764
Department of Statistics
University of California. Berkeley

Abstract

We develop and analyze M-estimation methods for divergence functionals and the likelihood
ratios of two probability distributions. Our method is based on a non-asymptotic variational
characterization of f-divergences, which allows the problem of estimating divergences to be
tackled via convex empirical risk optimization. The resulting estimators are simple to implement,
requiring only the solution of standard convex programs. We present an analysis of consistency
and convergence for these estimators. Given conditions only on the ratios of densities, we show
that our estimators can achieve optimal minimax rates for the likelihood ratio and the divergence
functionals in certain regimes. We derive an efficient optimization algorithm for computing our
estimates. and illustrate their convergence behavior and practical viability by simulutionsﬁ]

1X1v:0809.0853v2 [math.ST] 22 Apr 2009

f— GAN

Fenchel (Convex) Conjugate of f at t: f*(t) = sup {ut— f(u)}

uEdom f
Dy (ola) = [a@)s (@) "

q(z)

:/q(aj) sup {tw—f*(t)}dx

tedom f q ZE)

:/ sup {tp(x) — q(z)f"(t)} dz

tedom f

_ / sup {p(2)T(z) — q(a)f*(T(x))} da

TeT

> sup { [p@)t(@)do [ate) (1) |

TeT

= sup {Eypp(e)[T(2)] — Epmg)[f*(T(x))]} the lower bound is tight if T*(x) = f’ (
TeT

f— GAN

min Dy (pllq) <= min {Eyp)[T(2)] — Epmq@)lf(T(2))]}

min Dy (paaeal|p) <= it {Fyrpy, () T(0)] — Bgrepo [(T())]} +GAN objective
G G

rrelin max Ernpiaea (@) 108 D(2)] + E.p[log(l — D(G(2)))]
G D

— I[eun]Ewdiata(x) [lOg DE (33)] +]Ezwp(z) [1Og(1 T DZ’(G(Z)>)]
G

= min Eyp,,o0 108 DE(2)] + By opg () [log(1 — DE ()] Vanilla GAN objective
Oc

f— GAN

HQIiIl {Ex’\’pdata (96) [T(CE‘)]
G

— Eopo @)/ (T'(2))]}

Name D(P||Q) Generator f(u) T*(x)
Kullback-Leibler [p(r) log 275 dar u log u 1 + log 255
Reverse KL f 1(x) log ;7[—}: dx — log u - ;’,-::-;

%oa 2 ale)—p(x))™ 4 . —1)2 o(plx) _
Pearson y o —da) (u—1) g — 1
Squared Hellinger (\/p(.l') - \/q(.r)) dur (Vu — l‘)2 (\/L':—l'—, \/;LH—:
Jensen-Shannon % f p(x) log /'“"{i:’:, >+ q(x) log M_:% dx —(u+1)log '—SJ +ulogu log #

GAN

fp(.r] log 2,,(.,,.)

2q(x)
plx)+q(x)

Sl e T + qlx) log

dr — log(4)

ulogu — (u+1)log(u+1)

e ple)+qlr)

plr)

O — =
I) plx)+qlx)

Name Output activation g dom - Conjugate f*(t) f'(1)
Kullback-Leibler (KL) v R exp(t—1) 1
Reverse KL —exp(—v) R_ —1 — log(—t) -1
Pearson \? v R 2+t 0
Squared Hellinger 1 — exp(—v) t <1 = 0
Jensen-Shannon log(2) — log(1 + exp(—v)) t<log(2) —log(2—-exp(t)) O

GAN — log(1 4 exp(—v)) R_ —log(1 —exp(t)) —log(2)

f— GAN

7/9[420|¥]7|6
#53]215]13]0
#131/1313121517

EEBGEEINEE
BB
5%/]05]2[4]7
EPBEEECN
EOBEEEEIE
AORCGHED
2015 761/ [217
4[8/e[]2[0[8]7

7. /19111510210

Kullback-Leibler

Reverse Kullback-Leibler

Squared Hellinger

Jensen-Shannon (Vanilla GAN)

(c) Squared Hellinger

Wasserstein GAN

Kullback-Leibler

Reverse Kullback-Leibler
Pearson chi-square
Hellinger

f — divergences Jenson-Shannon

Pdata
GANSs Structure

What else?

Wasserstein GAN

Wasserstein GAN

Martin Arjovsky', Soumith Chintala®, and Léon Bottou'?

lCourant Institute of Mathematical Sciences

2Facebook Al Research

1 Introduction

The problem this paper is concerned with is that of unsupervised learning. Mainly,
what does it mean to learn a probability distribution? The classical answer to this
is to learn a probability density. This is often done by defining a parametric family
of densities (FPp)gere and finding the one that maximized the likelihood on our data:
if we have real data examples {2}, we would solve the problem

1 m :)
max — Z log Py(z™)
i=1

deRd MM

Wasserstein GAN

Training
Data

Random
noise

generator

discriminator
(critic)

Wasserstein
Distance

Wasserstein GAN

Optimal Transport Cost / Earth Mover’s Distance

p(x) q(x)

Regard p(x) as a pile of earth, and we wish to transport the mass in such a way
that it is transformed into the distribution q(x)

transportation plan: v(z,y) = amount of mass to move from x to y

We have to move the mass in gray region to green region

Wasserstein GAN

Optimal Transport Cost / Earth Mover’s Distance

transportation plan: y(x,y) = amount of mass to move from x to y

XY

Also, there is a cost to move the mass from x to y is given by a function
c(x,y) — [0,00)

c(z,y) = ||z — yll

c(z,y) = ||z —yll5

Wasserstein GAN

Optimal Transport Cost / Earth Mover’s Distance

XY

Also, there is a cost to move the mass from x to y is given by a function

cost(7;) // c(x,y)y(x,y)dxdy

optimal cost(vy;c) = inf // c(x (x,y)dxdy = inf E, x,
D (7;¢) Lt y)y(z,y)dady = it B eyl y)]

Wasserstein GAN

W1 (paata, PG) = inf Ey)~qlllz =yl
YET (paata,Pc)

How can we minimize the loss function ???

By Kantorovich-Rubinstein duality, we have

W1 (Pdata, Pa) = S Eonpiaea [(2)] = Eznpe [f(2)]}

Wasserstein GAN

Wl (pdataapG) — Sup {Eazwpdata(zv) [f(il?)] _ ExNPG (x) [f(ﬂ?)]}
[fllo<K

Applying generative adversarial network settings (G, D)

Wl (pdataa pG) — I%%X {Exwpdata(az) [D(SC)] _ Eazrvpc; (x) [D($)]}

Wl <pdata7 pG) — HHI%X {Exwpdata(a:) [D(:U)] — EZNp(Z) [D(G<Z)>]}

Wasserstein GAN

Now we have Wasserstein GAN problem that minimizes Wassersten-1 distance between data distribution and the
generator distribution

min Wi (paata; pe) = min max {Eqp.,.) [D(@)] = Eonp() [D(G(2))]}
G G D

Wasserstein GAN Problem

ng‘én I%%X Eprdata(:n) [IOgD(x)] —|_ EZNP(Z) UOg(l - D(G(Z)))]

Vanilla GAN Problem

Wasserstein GAN

So, why Wassersten-1 distance?

(Kullback-Leibler divergence) Dk1,(pg, p) — O>
1)

(Reverse KL divergence) Dxkr,(p,pg) — 0

)
)
(Jensen-Shannon divergence) Djs(pg,p) — 0
(Total variation distance) TV (pg,p) — 0 > (2)

)

(Wasserstein-1 distance) Wi (pg,p) — 0 (3)

(3) is the most strict condition
That is, we can find a case satisfying (1) or (2) but not satisfying (3)

Wasserstein GAN

So, why Wassersten-1 distance?

Optimal D’s
1.0 : : , ' . r .
— Density of real
08l —— Density of fake |
—— GAN Discriminator
—— WGAN Critic] o)
0.6 -] GAN D learns very quickly to distinguish real and fake

- Optimal D is locally saturated and its gradient vanishes

WGAN Ceritic does not saturate, and converges to a linear
function
—> Optimal critic have no problem at all

Additionally, using critic does not accompany mode collapse
unlike GANs

-0.2 Vanishing gradients 1
in regular GAN

__O) 4]]]]] I !
-8 -6 -4 -2 0 2 4 6 8

Wasserstein GAN

Loss function value — Visual quality (\Wasserstein-1)

3.5 T T T T 3.5
— MLP 512
3.0 3.0}

05 | R 0.5

T T T

— DCGAN

Al 4 2 0

2.5 2.5

Wasserstein estimate
-
wm

Wasserstein estimate

1.0 1.0

v A

0.0 0.0

0 100000 200000 300000 400000 500000 600000 0 100000 200000 300000 400000 500000 €00000
Generator iterations Generator iterations

T T

— MLP_G,MLP D

Wasserstein estimate

100000 200000 300000 400000 500000 600000
Generator iterations

Wasserstein GAN

Loss function value — Visual quality (JSD)

T T T T T T T

MLP — DCGAN

1.0}

0.8

JSD estimate
JSD estimate

L

oo | I A I A A !
0 50000 100000 150000 200000 250000 300000 350000 400000 0 50000 100

Generator iterations

000 150000 200000 250000 300000 350000 400000
Generator iterations

MLP_G,MLP_D

JS D estimate

I

0'0 4 A 3 4 2 A
0 50000 100000 150000 200000 250000 300000 350000 400000

Wasserstein GAN

DCGAN LSGAN WGAN (clipping) WGAN-GP (ours)

Basehne (G- DCGAN D DCGAN) ,.

Wasserstein GAN

DCGAN LSGAN WGAN (clipping) WGAN-GP (ours)

Gated multiplicative nonlinearities everywhere in G and D
. — 5. s .-"“7“»""?-}"'“'li;;:'m;"":'-‘r B) ®

o i Ty «‘,,-
, 1Y ' Al .‘ ’] e | . B 5 o
i ! ‘ ! B 18 O =] Vi E g
: - o l == q

v

tanh nonlinearities everywhere in G and D

by o
ﬂ;%s,

Energy-Based Generative Adversarial Networks

Training
Data

Random
noise

generator

discriminator

Vanilla GANs (JS Divergence)

f—~GANs (f—Divergence)

Generated

~———

Energy-Based Generative Adversarial Networks

Training
Data

Wasserstein

Distance

discriminator
(critic)

Random
noise

generator

Wasserstein GANs (Wasserstein-1 Distance)

Energy-Based Generative Adversarial Networks

Training
Data

Energy

discriminator

(energy
function)

Random
noise

generator

Energy-Based GANs (Energy)

Energy-Based Generative Adversarial Networks

Published as a conference paper at I[CLR 2017

ENERGY-BASED GENERATIVE ADVERSARIAL NET-
WORKS

Junbo Zhao, Michael Mathieu and Yann LeCun
Department of Computer Science, New York University
Facebook Artificial Intelligence Research
{jakezhao, mathieu, yann}@cs.nyu.edu

ABSTRACT

We introduce the “Energy-based Generative Adversarial Network™ model
(EBGAN) which views the discriminator as an energy function that attributes
low energies to the regions near the data manifold and higher energies to other
regions. Similar to the probabilistic GANs. a generator is seen as being trained
to produce contrastive samples with minimal energies. while the discriminator is
trained to assign high energies to these generated samples. Viewing the discrimi-
nator as an energy function allows to use a wide variety of architectures and loss
functionals in addition to the usual binary classifier with logistic output. Among
them. we show one instantiation of EBGAN framework as using an auto-encoder
architecture, with the energy being the reconstruction error, in place of the dis-
criminator. We show that this form of EBGAN exhibits more stable behavior than
regular GANs during training. We also show that a single-scale architecture can
be trained to generate high-resolution images.

Energy-Based Generative Adversarial Networks

Energy Function: A function assigns energy (a scalar value) to every point of space (lower the better)

In unsupervised learning, low energy is assigned where data are observed

Energy ‘

OO O—0O00——0 0—0-0 1-d data space

Energy-Based Generative Adversarial Networks

4)

Training
Data

'

Energy Function
(Autoencoder-Reconstruction Error)

Reconstruction error provided by AE is used as the energy

generator

AE is trained to assign low energy (good reconstruction) to real data
AE is trained to assign high energy (bad reconstruction) to generated data
G is trained to assign low energy (good reconstruction) to generated data

Energy-Based Generative Adversarial Networks

AE is trained to assign low energy (good reconstruction) to real data
AE is trained to assign high energy (bad reconstruction) to generated data
G is trained to assign low energy (good reconstruction) to generated data

i Wax By () D@)] + Eapo)[(m = D)) 4+ Epnps () [D()

Hél(i;n I%%X Exwpdata(w) [D(ZC)] + IB:zwp(z) [(m - D(G(z)))—|—] + EZNP(Z) [D(G<Z))]

For optimal D* and G™, /]I{:B:pdata(x)<pg*(w)}(pdata(x) — pg+(x))dxr =0

that is, pdata = pg+ a.€.

Energy-Based Generative Adversarial Networks

DCGAN EBGAN

Pl iSee - 1 - S
I

Fllﬁ‘ﬂl ﬁ v] -
SR w B L !M‘ iz
Tk s P i
Wl TEoa TNy MR S - §9
Eﬂl‘lﬂ% il .y] 5
~ R SRR SN S LS

Energy-Based Generative Adversarial Networks

DCGAN EBGAN

ﬁﬂﬂﬁb ﬁ PREYS
A °F PR N0
5 ﬁmﬁﬁﬂ FEIEA 02
wWEINe L NRENCE]

=13
AEP 220 G e 00

Energy Based Generatlve Adversarlal Networks

ImageNet 128 by 128

Energy-Based Generative Adversarial Networks

ImageNet 256 by 256

Boundary Equilibrium Generative Adversarial Networks

BEGAN: Boundary Equilibrium Generative
Adversarial Networks

David Berthelot, Thomas Schumm, Luke Metz
Google
{dberth,fwiffo,lmetz}@google.com

Abstract

We propose a new equilibrium enforcing method paired with a loss derived from
the Wasserstein distance for training auto-encoder based Generative Adversarial
Networks. This method balances the generator and discriminator during training.
Additionally, it provides a new approximate convergence measure, fast and stable
training and high visual quality. We also derive a way of controlling the trade-off
between image diversity and visual quality. We focus on the image generation
task, setting a new milestone in visual quality, even at higher resolutions. This is
achieved while using a relatively simple model architecture and a standard training
procedure.

Boundary Equilibrium Generative Adversarial Networks

EBGAN (64 by 64) BEGAN (128 by 128)

Boundary Equilibrium Generative Adversarial Networks

Training
Data

'

discriminator
(Autoencoder-Reconstruction Error)

Random ~N

noise Compare the distributions of reconstruction error
generator

Boundary Equilibrium Generative Adversarial Networks

L(z) = ||lx — D(x)||; = Reconstruction error of x

L(z) ~ qdata, T ~ Pdata = Error distribution of real samples

L(x) ~qg, v ~ pc = Error distribution of generated samples

We want to make two error distributions similar

Wi1(qaata, = inf Eiz o) ||T —
1(4aata, 46) YEI (qdata 9G) (9) VH 4

Boundary Equilibrium Generative Adversarial Networks

W1 (q4ata. = inf K o lT —
4data; 46) YEI (qdata 9G) (9) fYH 4

Instead of using the Kantorovich-Rubinstein duality, in BEGAN simply utilize lower bound

inf E[|z — y|] > inf |E[z — y]| = |E[z] — E[y]]

W]- (Qdata7 QG) Z ’ExNQdata [ZE] o Eyqu [y] ’

Boundary Equilibrium Generative Adversarial Networks

Wi (Qdatav qG) > ’ExNQdata [5’3] —Eyge [y”

We want the discriminator to maximize the lower bound to maximize the Wassertein-1 distance

Two possible cases to maximize the lower bound

(Wl (Qdataa qG) Z Equdata [:C] o EyNQG [y]
EZBNQdata [CU] — 0

| Eyrgo ly] — 0

7\

7\

(Wl (Qdata7 qG) Z EyNQG [y] o I[:'4:517’\’qdata [[I;]
EZBNQdata [CU] — O

| Eyrgo ly] — oo

In BEGAN, the second case is selected since minimizing the reconstruction error of the real data

naturally leads to autoencoder task

Boundary Equilibrium Generative Adversarial Networks

Finally we have,

Dloss LD = Epnpan(@ |z — D(@)|1] = Eznp)[|G(2) — D(G(2))]]1]

L

G-loss Lg

Similar to Wasserstein GANSs, but two main differences

(1) BEGAN matches distributions between reconstruction errors not between samples

(2) No K-Lipschitz condition is necessary because of not using the Kantorovich-Rubinstein duality
-—> Weight/gradient clipping not required

Boundary Equilibrium Generative Adversarial Networks

In practice it is crucial to maintain a balance between the generator and discriminator losses

In the paper, G and D are at equilibrium when

E:chdata(x) [ﬁ(l‘)] — EZNp(Z) [E(G(Z))]

Moreover, the point of equilibrium can be tuned with a parameter gamma

Ezwp(z) [[,(G(Z)]
Emwpdata(a:) [,C(CE)]

/y:

Boundary Equilibrium Generative Adversarial Networks
Ezwp(z) [E(G(Z))]

= (quality) 0 = 1 (diversity)

]Ex’\’pdata(x) [E(x)]

Boundary Equilibrium Generative Adversarial Networks

Mgiobar = L(x) + [7L(x) — L(G(2c))|

Convergence measure — Visual quality

0.085

0.080F

0.075}

Convergence
o
o
\'
o

0.065 |-

0.060F

ey
=R T

0055 I 1 I 1 | I 1 1 1 1 I
0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000 220000

Global Step

InNfoGAN

InfoGAN: Interpretable Representation Learning by
Information Maximizing Generative Adversarial Nets

Xi Chen'?, Yan Duan'*, Rein Houthooft'*, John Schulman'?, Ilya Sutskever’, Pieter Abbeel'*
f UC Berkeley. Department of Electrical Engineering and Computer Sciences
T OpenAl

Abstract

This paper describes InfoGAN, an information-theoretic extension to the Gener-
ative Adversarial Network that is able to learn disentangled representations in a
completely unsupervised manner. InfoGAN is a generative adversarial network
that also maximizes the mutual information between a small subset of the latent
variables and the observation. We derive a lower bound of the mutual information
objective that can be optimized efficiently. Specifically, InfoGAN successfully
disentangles writing styles from digit shapes on the MNIST dataset, pose from
lighting of 3D rendered images, and background digits from the central digit on
the SVHN dataset. It also discovers visual concepts that include hair styles, pres-
ence/absence of eyeglasses. and emotions on the CelebA face dataset. Experiments
show that InfoGAN learns interpretable representations that are competitive with
representations learned by existing supervised methods.

InNfoGAN

——

Entangled Representation (hard to interpret) Disentangled Representation (easier to interpret)

InfoGAN

Example:
orresponds to the “width” of digits

z] axis ¢

orresponds to the “type” of digits

72 axis ¢

InfoGAN

Just random noises

}

Random
noise (z)

Random
noise (c)

Corresponds to semantic features

Training
Data

generator

discriminator

recognition
network

InfoGAN

IIQIiIl Hela;X Eaijdata(m) [log D(:C)] _l_ Esz(z) [1Og(1 o D(G(Z)))]
G D

II@lci;Il Helgx E:,;diata(w) [k)g D(SE‘)] + IE‘:zwp(z), c~p(c) [lOg(l o D(G(Z7 C)))]

InNfoGAN

Mutual Information: Measure of dependence between two random variables
—> amount of information obtained about X through observing Y

[(X;Y)=H(Y)-HY|X)=HX) - H(X|Y)

H(X) H(Y)

H(X,Y)

InfoGAN

InfoGAN tries to maximize the mutual information of the latent code ¢ and the output of G

min max By,) [log D(2)] + E,upz), eope)log(l — D(G(2,¢)))] = A~ I(c; G(z,c))

0c Op

I(c;G(z,c)) = H(G(z,c)) = H(G(z,¢);¢) = H(c) — H(c;G(2,¢))

Have no idea of probability density of G(z,c), but we know p(c)

InfoGAN

Variational Mutual Information Maximization
—> We can obtain a lower bound of the posterior p(c|G(z,c)

Let g(c|x) be an approximation of p(c|x)

I(c;G(z,¢)) = —H(c|G(z,¢)) + H(c)
= Eung(z,0)Eermp(eln) [log p(c|7)] + H(c)
= Eunc(z0) | Prr(p(cl2)llg(clz)) + Eompelelog g(c'2)]] + H(c)
> Eycz.0)Eermpielny1og ¢(c|x)] + H(c)
= Ecp(e), enC(z,c) l0gq(clz) + H(c)
= L;(G,q)

q is parameterized by an additional neural network

InfoGAN

gg}‘% Helgx E:L’diata(x) [log D(QJ)] + IE“z~p(:<:), c~p(c) [10g<1 _ D(G<Z7 C)))] — A LI(G? q)

Training
Data

Real

] Fake
Just random noises

|

Random
noise (z)

|

discriminator

Random
noise (c)

Corresponds to semantic features

Generator

recognition
network

InfoGAN

discriminator

Training
Data

Just random noises

|

Random
noise (z)

Random
noise ()

recognition
network

Corresponds to semantic features generator m K
Z Z Cgen,i k 108 Cq ik (Cross-Entropy)
i=1 k=1

ECNP(C), z~G(z,c) log C]<C|37) m
Z(Cgen,i - Cq,i>2 (MSE)

1=1

InfoGAN

1.0 | T SRR SR - | — InfoGAN [}
“ 5 | | — can

L

0.0

0 200 100 600 800 1000
Iteration

InfoGAN

12)

anii

(No clear me

regular GAN

b) Varying ¢; on

(

nfoGAN (Digit type)

(a) Varying ¢ on

2 on InfoGAN (Width)

210

c3 from

InfoGAN (Rotation) (d) Varying

PeDDE BPUODD
PeDDE PUODD
PeLDE DPUODD
PLLDE PLODD :
fLLDS I POODD
NLLDS . PUODD ;
NLTDS PUODD
NLTDe DUODD
NQTDE DUODD
NQunE DUODD
TOPDY Sesee
TOGTY SedsSe
TOPTVY SIS
TOODD ; PPOSS _
THPDY - POOD §
TBEDD | PDODY
DESDD : DPOODS
DeeDd PDODOHDY
DHeDD DD
> DBEDD Doy

InfoGA

Generative Moment Matching Networks

Generative Moment Matching Network

Generative Moment Matching Networks

Yujia Li' YUJNIALI@ CS.TORONTO.EDU
Kevin Swersky' KSWERSKY (' CS.TORONTO.EDU
Richard Zemel'# ZEMEL@ CS.TORONTO.EDU
! Department of Computer Science. University of Toronto. Toronto, ON. CANADA

?Canadian Institute for Advanced Research, Toronto, ON, CANADA

Abstract

We consider the problem of learning deep gener-
ative models from data. We formulate a method
that generates an independent sample via a sin-
gle feedforward pass through a multilayer pre-
ceptron, as in the recently proposed generative
adversarial networks (Goodfellow et al., 2014).
Training & generative adversanal network, how-
ever, requires careful optimization of a difficult
minimax program. Instead. we utilize a tech-
nigue from statistical hypothesis testing known
as maximum mean discrepancy (MMD). which
leads 10 a simple objective that can be imterpreted
as matching all orders of statistics between a
dataset and samples from the model. and can be
trained by backpropagation. We [urther boost
the performance of this approach by combining
our generative network with an auto-encoder net-
work, using MMD to leamn to generate codes that
can then be decoded to produce samples. We
show that the combination of these techniques
yields excellent generative models compared to
baseline approaches as measured on MNIST and
the Toronto Face Database.

Kiros et al., 2014), machine translation (Cho et al., 2014;
Sutskever et al, 2014), and more. Despite their successes,
one of the main bottlenecks of the supervised approach is
the difficulty in obtaining enough data to learn abstract fea-
tures that capture the rich structure of the data. It is well
recognized that a promising avenue is to use unsupervised
learning on unlabelled data, which 1s far more plentiful and
cheaper to obtain,

A long-standing and inherent problem in unsupervised
fearning is defining a good method for evaluation. Gen-
erative models offer the ability to evaluate generalization
in the data space. which can also be qualitatively assessed.
In this work we propose a generative model for unsuper-
vised learming that we call generative moment matching
networks (GMMNs). GMMNs are generative neural net-
works that begin with a simple prior from which 1t is easy
to draw samples. These are propagated deterministically
through the hidden layers of the network and the output is
a sample from the model. Thus, with GMMNs it is easy
to quickly draw independent random samples, as opposed
to expensive MCMC procedures that are necessary in other
maodels such as Boltzmann machines (Ackley et al.. 1985:
Hinton. 2002: Salakhutdinov & Hinton, 2009). The struc-
ture of a GMMN is most analogous to the recently pro-

Generative Moment Matching Network

Training
Data

generator

Two-Sample Test
(Moment Matching)

Generative Moment Matching Network

Maximum Mean Discrepancy

L1y 3y Tp ™~ P
— want to test p, = p,
Y1y s Ym ™~ Dy

LyivD (Pzs Py f) =

if f(x) =2 = (difference of sample mean)

1=1 1=1

] — 1 —

Z ; Z ;
n 4 oon 4 !
=1 1=1

if f(z) =2° = (difference of the second moment)

Generative Moment Matching Network

Maximum Mean Discrepancy

LyivD (Pz, Dy;) =

n

%Zf(%‘)—%Zf(yi)

1
using k(x,y) = exp (—2—(56 — y)2) — difference of moments of all the orders
o

with Gaussian kernel, k,
Moment Matching Pe = py <= Lyvmp (P2, py;) =0

Generative Moment Matching Network

Training

Algorithm 1: GMMN minibatch training

Input : Dataset {x¢, ..., x% }. prior p(h). network
f(h; w) with initial parameter w?)
Output: Learned parameter w”

while Sropping criterion not met do

Get a minibatch of data X¢ « {x¢ ,...,x¢ }
3 Get a new set of samples X* + {x3,...,x} }
Compute gradient OLL;+‘D on X9 and X*
Take a gradient step to update w

—

[V

LV TH SN

end

=)

Generative Moment Matching Network

dadodiodindndiadindndi il i)

' };mwlnlo?‘sbn iy i-i

- '
N ',"'.."-V“"""
rpebebl bl A1 1] A1 &) o o

o o o S
TS S Sk kel atad
»JT. ol ool ool ofyd “M““H
T o T T T
i T T A
T VR R S

(a) MNIST interpolation (b) TFD interpolation

MMD - GAN

MMD GAN: Towards Deeper Understanding of
Moment Matching Network

Chun-Liang Li’* Wei-Cheng Chang!* Yu Cheng®? Yiming Yang' Barnabais Péczos'
! Carnegie Mellon University, ?Al Foundations, IBM Research
{chunlial,wchang?2,yiming,bapoczos}@cs.cmu.edu chengyu@us.ibm.com
(* denotes equal contribution)

Abstract

Generative moment matching network (GMMN) is a deep generative model that
differs from Generative Adversarial Network (GAN) by replacing the discriminator
in GAN with a two-sample test based on kernel maximum mean discrepancy
(MMD). Although some theoretical guarantees of MMD have been studied, the
empirical performance of GMMN is still not as competitive as that of GAN on
challenging and large benchmark datasets. The computational efficiency of GMMN
is also less desirable in comparison with GAN, partially due to its requirement for
a rather large batch size during the training. In this paper, we propose to improve
both the model expressiveness of GMMN and its computational efficiency by
introducing adversarial kernel learning techniques, as the replacement of a fixed
Gaussian kernel in the original GMMN. The new approach combines the key ideas
in both GMMN and GAN, hence we name it MMD GAN. The new distance measure
in MMD GAN is a meaningful loss that enjoys the advantage of weak™ topology
and can be optimized via gradient descent with relatively small batch sizes. In our
evaluation on multiple benchmark datasets, including MNIST, CIFAR-10, CelebA
and LSUN, the performance of MMD GAN significantly outperforms GMMN, and
is competitive with other representative GAN works.

MMD - GAN

Generative Moment Matching Network: ngin Lyviv (Pdatas Pa; k)
G

Better results with: min max Lyvp (Pdata, Pa; k)
0c ke

Apply adversarial learning & NN: IIGIiIl max Ly (Pdata, Pas ko f)
¢ by

Feature extraction before apply kernel trick

MMD - GAN

Training

Data

Two-Sample Test
(Moment Matching)

generator

additional
kernel
mapping
network

MMD - GAN

=~ 0DOUXNNDQ
VO I~ VTIPS SN |
oy Bu o L — RN

)
r"é
O 6
7
&g v
L g
y 7
i

7
7
/
[
7
Q
O
9

NL 0L QANQ
NOODQ ™~
NN\
N O sNy -~
| &
o

2|6 /
5|10 ¥
7|0
715 2 .
J|& S
17 9
2i13 ¢
779

LColWOoOUWWLuy - ¢

N

Ao oo~ 20

Eﬂg Ylns!

’Wuisuﬂmwmn“‘

‘%ﬁfmtﬂéina

(d) GMMN-D CIFAR-10 (e) GMMN-C CIFAR-10 (f) MMD GAN CIFAR-10

MMD - GAN

n
/

e
G
o

N AOQOODOC O
1IN OO w
LYY =~V
Ohaeax+E\NDLe

14
q J
T 4
g X
39
2
90
2 6

e
o
>
z
- K
<
s
—

oN

o

OssnNCNN B0
NUWD g\ ¢W
L$W0mw\¢

4

O
S
<
&
1

3
T

Qe 0oUnpOLE~

\v-\-a—\Jp_)
QSN el =Nl -

(d) MMD GAN MNIST (e) MMD GAN CelebA () MMD GAN LSUN

Z

MMD — GAN

10°

2 CelebA dataset - LSUN Bedrooms
! ' " ! »
~ 107
(@)
~ S
S 10°
104
10"0 9 S o 0 0 0 o Q
of o0 o0 o0 o0 o o° o0 0.0 . . ; : ‘
° G S R L LY R 0 5000 10000 15000 20000 25000 30000 35000 005 50000 100000 150000 200000 250000
g iterations g iterations g iterations

(a) MNIST (b) CelebA (¢) LSUN Bedrooms

Variational Autoencoder

Variational Inference

(1) Bayesian Inference Problem with Latent Variables

Prior Distribution of the Latent Variable z

Likelihood of z given x

p(z|r) =

A

Posterior Distribution of the
Latent Variable z

¢ —
p(z)p(z|?)

p(x)
|

Evidence of x

Variational Inference

(1) Bayesian Inference Problem with Latent Variables

Prior Distribution of the Latent Variable z Likelihood of z given x

|) l—l

_ p(z)p(z]z)
p(zaz) o p(:c)

|

Evidence of x

Posterior Distribution of the
Latent Variable z

Variational Inference

(2) Bayesian Approximate Inference

Monte Carlo Methods R1y%2y """ 5 ~m ™ p(z!x)
N ——

samples

Approximate Inference q (Z) ~ yy, (< ‘ ,’L’)

Variational Inference

(2) Bayesian Approximate Inference

Monte Carlo Methods <1522, " 5 %n Np(Z’LE)
N————
samples
Approximate Inference q (Z) ~ p(z ‘:L')
Family of g

Measure of proximity

Variational Inference

(2) Bayesian Approximate Inference

Monte Carlo Methods

Approximate Inference

Naive Monte Carlo

Metropolis-Hastings

Rejection Sampling

Gibbs Sampling

Importance Sampling

Reversible-Jump

Laplace Approximation

Expectation Propagation

Variational Inference

Variational Inference

(3) Variational Inference

q¢"(z) = argmin Dy, (q(2)|[p(z|x))
Optimal Approximation qceQ

Target (Posterior
Class of functions get ()

What we do not know

- 7777

Variational Inference

(3) Variational Inference

Dicc a(2)Ip(=12) = [a(2)log 12 .

p(z|z)
_ /q(z) log q(z)dz — /q(z) log p(z|r)d=

—]Ezwq(z) [lOg Q(Z>] - IEz:wq(z) [10gp(2|£l?)]

p(z, w)]

p(z)

— Ezwq(z) [1Og Q(Z)] — IEj‘zwq(z) llog
— Ezwq(z) [1Og Q<Z)] - Ezwq(z) [logp(z, ZE)] + 1ng(.5l3)

—]Ezwq(z) [lOg Q(z>] - IIEQZNq(z) [1ng(2)p(£l?’2>] + logp(x)

Variational Inference

(3) Variational Inference

min D (0(2)|Ip(z]2)) = min Earsg() 108 0(2)] ~ Bang(e) 08 p()p(al2)

Now we can solve the problem!

If q is parametrized by \phi,

mqbin DKL(Q(]ﬁ(Z)Hp(Z’x)) — m(gn Ez~q¢(z) [lOg Q¢(Z)] - Ez~q¢(z) [1ng(z>p($‘2)]

Variational Inference

(3) Variational Inference

Dicc a(2)Ip(=12) = [a(2)log 12 .

p(z|r)

—]Ezwq(z) [lOg Q(z>] - IIEQZNq(z) [1ng(2)p(33’2>] + logp(x)

\ - 4

logp(z) = Dxr.(a(2)[[P(2|2)) —Eong(z) log q(2)] + Eong(z) log p(2)p(2]2)]
N—— ~

"

Evidence KLD: Nonnegative Evidence Lower Bound (ELBO)

Variational Autoencoder

Auto-Encoding Variational Bayes

Diederik P. Kingma Max Welling
Machine Learning Group Machine Learning Group
Universiteit van Amsterdam Universiteit van Amsterdam
dpkingma@gmail.com welling.max@gmail.com
Abstract

How can we perform efficient inference and learning in directed probabilistic
models, in the presence of continuous latent variables with intractable posterior
distributions, and large datasets? We introduce a stochastic variational inference
and learning algorithm that scales to large datasets and, under some mild differ-
entiability conditions, even works in the intractable case. Our contributions is
two-fold. First, we show that a reparameterization of the variational lower bound
yields a lower bound estimator that can be straightforwardly optimized using stan-
dard stochastic gradient methods. Second, we show that for i.i.d. datasets with
continuous latent variables per datapoint, posterior inference can be made espe-
cially efficient by fitting an approximate inference model (also called a recogni-
tion model) to the intractable posterior using the proposed lower bound estimator.
Theoretical advantages are reflected in experimental results.

Variational Autoencoder

a I Do, (Z)
s T pe(al2)
po, (2]2)
b2 poyon@) = [b (pas (ol

Variational Autoencoder

Variational Autoencoder

(1) VAE problem includes not only posterior (approximate) inference
(2) But also involves maximum likelihood inference of the generating process

Based on the maximum likelihood principle, we want to maximize the marginal likelihood of \theta given data x

10gp9(£> — DKL(Q¢(Z|x)||ptrue(z|x>> T Ez~q¢(z|m)[_ log Q¢(Z|$) T 10gp<z> + 10gp9(£|z)]

log pg(z) > E. g, (z]2)[— log gs(2]2) + log p(2) + log pg(x|2)]

HQI%X Ez~q¢(z|az)[_ log Q¢<Z‘x) + logp(z) + 1ng9(513‘2>]

Maximizing the ELBO implies the following two:
a) Maximizing the marginal likelihood (for generating process, or the decoder)
b) Minimizing the KL divergence of the approximate from the true posterior

Variational Autoencoder

]Ez~q¢(z]m)[_ 1Og Q¢<Z|Qf) + 1ng(z) + Ingg(x‘Z)] — _Ezwq¢(z|m)[log Q¢<Z|I) _ 1ng(z)] + IE,Zr\lq(z5(,z|:c) [1ng9(£6|2)]

qe(2|)
p(z)

= _Ez~q¢(z|x) llOg] ‘|‘Ezwq¢(z|x) [logpg(x\z)]

= —Dxr(a(2[2)[[P(2)) + Ezngy (z)) [l0g o (2]2)]

max — Dxr(ge(2]2)[[P(2)) + Eangy(zo) [log po(2]2))

min Dt (0 (2}2) [p(2) — Eongy oo log pole]2)]

Y

(1) Guide variational approximate posterior to match the prior p(z)
(2) Maximize the expected likelihood of the generative model given data x
(or guide encoder-decoder to reconstruct the data)

Variational Autoencoder

encoder decoder
4 (z|x) pe(x|2)

mint Dyt (0 (2[2)[[P(2)) — Eong o1 log o(al2)

Variational Autoencoder

Example 1: Gaussian Encoder — Gaussian Decoder VAE

|

4

\
A
i
it
\
. \".

l Y, “ " Y,

' '
encoder decoder
4 (z|x) pe(x|2)

0o (2ilms) = N (zi; (i), 0(x:)?T) polwilzi) = N (wi; p(z2:), 0(2)°1)

Variational Autoencoder

Example 2: Gaussian Encoder — Bernoulli Decoder VAE

encoder decoder
4 (z|x) pe(x|2)

qp(2i|Ts) = N (zi; p(4), 0'(3373)21) po(x;|2z;) = Bernoulli(x;; p(2;))

Variational Autoencoder

DA ANANNANANNNNNSNSNNNNS
VAV LLLLLLW NN~
QAVYIYN L LLLVYY Y NN~
QUAVVDININntgtote VBV W w~~
QAVVHHLINNKVEWBVIVIVY W@ - ——
QOOODOHININNNHEPBDIIDIDD @ - - —
QAQOQODMIMMM N NMBDIOID D @ - - —
QOO MMMMN MO ®O DD D " e —
OODOMMNMM MMM D DD D e e —
QOOMME MMM OO LW e on o o e
QOMMMM M 0" 0" 000000 o e oo - —
DAl I I %0207 0000 00 o om0~ 0~ P~ o~
N L GG LG R e
DI~
S L LLELE Al o a a aakahaaas
SAddadadadocrrrrr T TTITIIINN
SAddddgTrrrrrrFFTITRITRIRINN
SAdTTTTrrrrrdrPRTR2R2RANN
SFTFToTooorroroeo NN

TTT

- -
-qi

.xJ
HD

Beta Variational Autoencoder

3-VAE: LEARNING BASIC VISUAL CONCEPTS WITH A
CONSTRAINED VARIATIONAL FRAMEWORK

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot,
Matthew Botvinick, Shakir Mohamed, Alexander Lerchner

Google DeepMind

{irinah, lmatthey, arkap, cpburgess, glorotx,

botvinick, shakir, lerchner}@gcogle.com

ABSTRACT

Learning an interpretable factorised representation of the independent data gen-
erative factors of the world without supervision is an important precursor for the
development of artificial intelligence that is able to learn and reason in the same
way that humans do. We introduce 3-VAE. a new state-of-the-art framework for
automated discovery of interpretable factorised latent representations from raw
image data in a completely unsupervised manner. Our approach is a modification
of the variational autoencoder (VAE) framework. We introduce an adjustable hy-
perparameter (7 that balances latent channel capacity and independence constraints
with reconstruction accuracy. We demonstrate that 3-VAE with appropriately tuned
3 > 1 qualitatively outperforms VAE (3 = 1), as well as state of the art unsu-
pervised (InfoGAN) and semi-supervised (DC-IGN) approaches to disentangled
factor learning on a variety of datasets (celebA, faces and chairs). Furthermore, we
devise a protocol to quantitatively compare the degree of disentanglement learnt
by different models, and show that our approach also significantly outperforms
all baselines quantitatively. Unlike InfoGAN., 3-VAE is stable to train, makes few
assumptions about the data and relies on tuning a single hyperparameter /7, which
can be directly optimised through a hyperparameter search using weakly labelled
data or through heuristic visual inspection for purely unsupervised data.

Beta Variational Autoencoder

Vanilla VAE

Beta VAE

________________________ sampling

g J g J
N N
encoder decoder
4 (z|x) pe(x|2)

min Dt (s (2[2)[[P(2)) = Eong, el [log po (@]2)]

)

tgin 5 - Dx1(gs(2|2)|Ip(2)) — Ezng, (z12) [log po(2]2))]

More weights on KL divergence term

Beta Variational Autoencoder

—lp

Entangled Representation (hard to interpret) Disentangled Representation (easier to interpret)

Beta Variational Autoencoder

Beta Variational Autoencoder

z, - azimuth | Zs - hair parting

.)\“
ﬁréiiéio) &
Ao i '

Adversarial Autoencoder

Adversarial Autoencoders

Alireza Makhzani Jonathon Shlens & Navdeep Jaitly
University of Toronto Google Brain
makhzani@psi.toronto.edu {shlens,ndjaitly}@google.com
Ian Goodfellow Brendan Frey
OpenAl University of Toronto
goodfellow.ian@gmail.com frey@psi.toronto.edu
Abstract

In this paper, we propose the “adversarial autoencoder™ (AAE), which is a proba-
bilistic autoencoder that uses the recently proposed generative adversarial networks
(GAN) to perform variational inference by matching the aggregated posterior of
the hidden code vector of the autoencoder with an arbitrary prior distribution.
Matching the aggregated posterior to the prior ensures that generating from any
part of prior space results in meaningful samples. As a result, the decoder of the
adversarial autoencoder learns a deep generative model that maps the imposed prior
to the data distribution. We show how the adversarial autoencoder can be used in
applications such as semi-supervised classification, disentangling style and content
of images. unsupervised clustering, dimensionality reduction and data visualization.
We performed experiments on MNIST, Street View House Numbers and Toronto
Face datasets and show that adversarial autoencoders achieve competitive results
in generative modeling and semi-supervised classification tasks.

Adversarial Autoencoder

encoder decoder
qe(2]%) Pe (x|2)

True

Generated

prior

p(2)

discriminator

Adversarial Autoencoder

VAE Igﬂ(bn Dx1L(qe(2]2)|[p(2)) — Engy (2]2) log po(z]2)]

Minimize the discrepancy between prior p(z) and posterior g(z|x)

aae min masx B,y 108 D(2)] + Eony([108(1 = D(2))] = Eungy o1y Hog pa(al2)]

Minimize the discrepancy between prior p(z) and aggregated posterior q(z)

q(z) = / 95 (2|T)Pdata(x)dxr — aggregated posterior distribution

Adversarial Autoencoder

Adversarial Autoencoder Variational Autoencoder

Adversarial Autoencoder

Adversarial Autoencoder Variational Autoencoder

-~s

Adversarial Autoencoder

(a) VAE (b) WAE and AAE

WAE reconstruction

Igliqbn Dy, (Q¢(Z|$)||p(z)) — EZN% (z|z) [logpg (CB|Z)] 61,%12} Eonpaaa @) Ezngy (2]2) [c(z,Go(2))] + A - Dy (q:||p-)

Adversarial Autoencoder

glz|x)

p— e
- q(z)
= B e /
ey pr—y
pr— pre—
— Draw samples Draw \."unp]r"\
prmay - § : y

from Cat(y) from Cat(y)
r +
sZalilEe i @

from p(z) LY. & for distinguishing
’ “|"" positive samples p(z)
from negative samples g(z) J L o L
HEN qly,zlx) "I(MZ'X)
— pr— — — -
X) . ¢ :
goftmax softmax We)=

AAE Basic Form / i L / / 1L

'<

linear

linear |2
2
Z\n

qlz|x)

/ Draw samples
™1 from A7{z|0.1I)
i’ ‘

0 -

L@ Semi-Supervised AAE Dimensionality Reduction AAE

X

/|

Draw samples
from N{z|0,1)

1 e

Draw samples
from N (20, 1)

<

Supervised AAE

Wasserstein Autoencoder

Wasserstein Auto-Encoders

Ilya Tolstikhin'. Olivier Bousquet?, Sylvain Gelly?. and Bernhard Scholkopf?

'\ax Planck Institute for Intelligent Svstems
*Google Brain

Abstract

We propose the Wasserstein Auto-Encoder (WAE) —a new algorithm for building a gen-
erative model of the data distribution. WAE minimizes a penalized form of the Wasserstein
distance between the model distribution and the target distribution. which leads to a different
regularizer than the one used by the Variational Auto-Encoder (VAE) [1l. This regularizer
encourages the encoded training distribution to match the prior. We compare our algorithin
with several other techniques and show that it is a generalization of adversarial auto-encoders
(AAE) [2]. Our experiments show that WAE shares many of the properties of VAEs (sta-
ble training. encoder-decoder architecture. nice latent manifold structure) while generating
samples of better quality, as measured by the FID score.

Wasserstein Autoencoder

W1 (paata, PG) = inf Egy)~qlllz =yl
YET' (paata,PaG)

Wl (pdataapG) = Sup {Ea;rvpdata(a:) [f(ﬂ?)] _ Ea:wpc; (x) [f(ilf)]}
| fllo <K

Wi (pdataapG) — I%%X {Eazwpdata(x) [D(CE)] - Esz(z) [D(G(Z))]}

Wasserstein Autoencoder

Wc(pdata7pG) — inf E(az,y)fv’y [C(LU, y)]
fYEF(pdataJ)G)

= inf Eppa@) Bengeln[e(z, G(2))]

{q:9-=p-}

q. is the aggregated posterior when x ~ pgqiq(x) and z ~ q(z|x)

inf Eorpyra(@)Bzngalo) [0(@, G(2))] + A - D(g|p2)

q(z|z)

WAE problem 9%1,1@1@ By ~paata(@) Bzrgy (z]2) c(z,Go(2))] + A - Dy (q:]|p2)

Wasserstein Autoencoder

WAE problem em(;?b Ewdiata(x)Ez~q¢(z|x) c(z, Go(2))] + A - Dw(Qszz)

WAE - GAN

it 8 By 01 B (1) (€2, Go ()] + A+ (Banp, (108 Dy(2)] + By (1) log(1 = Dy (2))])

WAE — MMD

M B pin () Barvgs (210 (6025 Go(2))] + A - Lanvap (g2, P2)

Wasserstein Autoencoder

WAE-MMD WAE-GAN

