
Understanding
Deep Generative Models

2018. 01. 04

DMQA Lab Seminar



Deep Generative Models



Generative Models

Generative models  try to learn data generating process

Motivating example: latent Dirichlet allocation



Generative Models with Latent Variables

Introducing latent variable can make problems tractable (e.g. mixture distribution)



Deep Generative Models

high-dimensional complex data

Conventional generative models are not tractable with



Deep Generative Models

GAN

f-GAN

WGAN

EBGAN

BEGAN

InfoGAN

GMMN

MMD-GAN

VAE

Beta-VAE

AAE

WAE



GANs, GMMN, and VAE



Generative Adversarial Networks

Random 

noise
generator

discriminator

Real

Fake

Training 

Data

Neural network

Input  noise (from prior)

Output  random sample (from model distribution)

Neural network

Input  Data (from training and generator)

Output  Probability of real



Generative Adversarial Networks

Adversarial learning process

Real

Generated



Generative Adversarial Networks

Random Noise

e.g. Uniform (0, 1) 

of 100 dimension

(Latent Distribution)

generator

z1 z2 … z99 z100

0.8642 -0.3331 … -0.0322 0.1234

Generating Process of GANs

100-dimensional vector

(Latent Variable)
Image



Generative Adversarial Networks

Training of GANs (Alternating Minimization)

Random 

noise
generator

discriminator

Real

Fake

Training 

Data

Generator trained to fool discriminator

Discriminator trained to distinguish generated from reals



Generative Moment Matching Network

Random 

noise
generator

Neural network

Input  noise (from prior)

Output  random sample (from model distribution)



Generative Moment Matching Network

Random Noise

e.g. Uniform (0, 1) 

of 100 dimension

(Latent Distribution)

generator

z1 z2 … z99 z100

0.8642 -0.3331 … -0.0322 0.1234

Generating Process of GMMN

100-dimensional vector

(Latent Variable)
Image



Generative Moment Matching Network

Discriminator in GANs determines how true samples

and generated samples are similar

Random 

noise
generator

discriminator

Real

Fake

Training 

Data



Generative Moment Matching Network

In GMMN, a method called Moment Matching is used to measure 

the similarity between true samples and generated samples

Random 

noise
generator

Training 

Data

Two-Sample Test

(Moment Matching)

Generator is learned to generate 

similar samples

(in terms of Moment Matching)



Variational Autoencoder

encoder

𝑞𝜙(𝑧|𝑥)
decoder

𝑝𝜃(𝑥|𝑧)

z
μz

σz

μx

σx

x

sampling

Gaussian Encoder – Gaussian Decoder

Neural network

Input  Data

Output  Parameters of

the latent distribution (μ, σ)

Neural network

Input  Latent vectors

Output  Parameters of

the model distribution (μ, σ)

ImageImage

sampling



Variational Autoencoder

z1 z2 … z99 z100

0.8642 -0.3331 … -0.0322 0.1234

100-dimensional vector

(Latent Variable)
Image

Generating Process of VAE

decoder

𝑝𝜃(𝑥|𝑧)

z

μx

σx

x



What’s Different

Random 

noise
generator

discriminator

Real

Fake

Training Data

encoder

𝑞𝜙(𝑧|𝑥)
decoder

𝑝𝜃(𝑥|𝑧)

z
μz

σz

μx

σx

x

sampling

ImageImage

sampling

GANs VAE

• G generates samples – G is a transformation (noise to sample)

 Implicit density / likelihood free

• Random noise distribution does not change (prior)

 There is no recognition model

• Min-max problem (adversarial)

• Suffers from mode collapse

• Unstable training (hard to balance G and D)

• Try to minimize the discrepancy between data distribution and model distribution

• Possible to utilize discrete random noise

• Decoder generates samples – decoder is an inference model (latent to parameters)

 Explicit density

• Latent variable distribution changes (posterior)

There is a recognition model (encoder)

• Minimization (or maximization) problem

• Suffers from blurry image (low quality images)

• Stable training

• Try to maximize model likelihood given data

• Hard to impose discrete latent distribution



Generative Adversarial Networks



Generative Adversarial Networks



Generative Adversarial Networks

Random 

noise
generator

discriminator

Real

Fake

Training 

Data

Generator tries to make generated samples to be classified as real

Discriminator tries to distinguish generated samples and real data



Generative Adversarial Networks

Generator tries to make generated samples to be classified as real

Discriminator tries to distinguish generated samples and real data



Generative Adversarial Networks

Generator tries to make generated samples to be classified as real

Discriminator tries to distinguish generated samples and real data



Generative Adversarial Networks



Generative Adversarial Networks

G is trained to minimize Jensen-Shannon divergence between data distribution and generator distribution!



Generative Adversarial Networks

G is trained to minimize Jensen-Shannon divergence between data distribution and generator distribution!

GANs Structure

Jensen-Shannon Divergence



Generative Adversarial Networks

What else can we use as a proximity?

GANs Structure



f – GAN

f – divergences

GANs Structure

Reverse Kullback-Leibler 

Kullback-Leibler

Pearson chi-square

Hellinger

Jenson-Shannon

Generalized GANs from minimizing JS divergence to minimizing an arbitrary f-divergence



f – GAN



f – GAN

f-divergence



f – GAN

So, how can we train GANs with f-divergences?

We want to solve the following problem:

However, we do not know pdata and pG,

but only have samples drawn from them, respectively



f – GAN

Variational Estimation of f-divergences



f – GAN



f – GAN

f-GAN objective

Vanilla GAN objective



f – GAN



f – GAN

Kullback-Leibler

Reverse Kullback-Leibler

Squared Hellinger

Jensen-Shannon (Vanilla GAN)



f – GAN



Wasserstein GAN

f – divergences

GANs Structure

Reverse Kullback-Leibler 

Kullback-Leibler

Pearson chi-square

Hellinger

Jenson-Shannon

What else?



Wasserstein GAN



Wasserstein GAN

Random 

noise
generator

discriminator

(critic)

Wasserstein 

Distance

Training 

Data



Wasserstein GAN

Optimal Transport Cost / Earth Mover’s Distance

p(x) q(x)

Regard p(x) as a pile of earth, and we wish to transport the mass in such a way 

that it is transformed into the distribution q(x)

We have to move the mass in gray region to green region



Wasserstein GAN

Optimal Transport Cost / Earth Mover’s Distance

Also, there is a cost to move the mass from x to y is given by a function

x y



Wasserstein GAN

Optimal Transport Cost / Earth Mover’s Distance

Also, there is a cost to move the mass from x to y is given by a function

x y



Wasserstein GAN

How can we minimize the loss function ???

By Kantorovich-Rubinstein duality, we have



Wasserstein GAN

Applying generative adversarial network settings (G, D)



Wasserstein GAN

Now we have Wasserstein GAN problem that minimizes Wassersten-1 distance between data distribution and the 

generator distribution

Wasserstein GAN Problem

Vanilla GAN Problem



Wasserstein GAN

So, why Wassersten-1 distance?

(1)

(2)

(3)

(3) is the most strict condition

That is, we can find a case satisfying (1) or (2) but not satisfying (3)



Wasserstein GAN

So, why Wassersten-1 distance?

GAN D learns very quickly to distinguish real and fake

 Optimal D is locally saturated and its gradient vanishes

WGAN Critic does not saturate, and converges to a linear 

function

 Optimal critic have no problem at all

Additionally, using critic does not accompany mode collapse 

unlike GANs

Optimal D’s



Wasserstein GAN
Loss function value – Visual quality (Wasserstein-1)



Wasserstein GAN
Loss function value – Visual quality (JSD)



Wasserstein GAN



Wasserstein GAN



Energy-Based Generative Adversarial Networks

Random 

noise
generator

discriminator

True

Training 

Data

Generated

Vanilla GANs (JS Divergence)

f–GANs (f–Divergence)



Energy-Based Generative Adversarial Networks

Random 

noise
generator

discriminator

(critic)

Wasserstein 

Distance

Training 

Data

Wasserstein GANs (Wasserstein-1 Distance)



Energy-Based Generative Adversarial Networks

Random 

noise
generator

discriminator

(energy 

function)

Energy

Training 

Data

Energy-Based GANs (Energy)



Energy-Based Generative Adversarial Networks



Energy-Based Generative Adversarial Networks

Energy Function: A function assigns energy (a scalar value) to every point of space (lower the better)

In unsupervised learning, low energy is assigned where data are observed

1-d data space

Energy



Energy-Based Generative Adversarial Networks

Random 

noise
generator

Energy Function

(Autoencoder-Reconstruction Error)

Training 

Data

Reconstruction error provided by AE is used as the energy

AE is trained to assign low energy (good reconstruction) to real data

AE is trained to assign high energy (bad reconstruction) to generated data

G is trained to assign low energy (good reconstruction) to generated data



Energy-Based Generative Adversarial Networks

AE is trained to assign low energy (good reconstruction) to real data

AE is trained to assign high energy (bad reconstruction) to generated data

G is trained to assign low energy (good reconstruction) to generated data



Energy-Based Generative Adversarial Networks

DCGAN EBGAN



Energy-Based Generative Adversarial Networks

DCGAN EBGAN



Energy-Based Generative Adversarial Networks

ImageNet 128 by 128



Energy-Based Generative Adversarial Networks

ImageNet 256 by 256



Boundary Equilibrium Generative Adversarial Networks



Boundary Equilibrium Generative Adversarial Networks

EBGAN (64 by 64) BEGAN (128 by 128)



Boundary Equilibrium Generative Adversarial Networks

Random 

noise
generator

discriminator

(Autoencoder-Reconstruction Error)

Training 

Data

Compare the distributions of reconstruction error



Boundary Equilibrium Generative Adversarial Networks

We want to make two error distributions similar



Boundary Equilibrium Generative Adversarial Networks

Instead of using the Kantorovich-Rubinstein duality, in BEGAN simply utilize lower bound



Boundary Equilibrium Generative Adversarial Networks

We want the discriminator to maximize the lower bound to maximize the Wassertein-1 distance

Two possible cases to maximize the lower bound

In BEGAN, the second case is selected since minimizing the reconstruction error of the real data

naturally leads to autoencoder task



Boundary Equilibrium Generative Adversarial Networks

Finally we have,

D-loss

G-loss

Similar to Wasserstein GANs, but two main differences

(1) BEGAN matches distributions between reconstruction errors not between samples

(2) No K-Lipschitz condition is necessary because of not using the Kantorovich-Rubinstein duality

Weight/gradient clipping not required



Boundary Equilibrium Generative Adversarial Networks

In practice it is crucial to maintain a balance between the generator and discriminator losses

In the paper, G and D are at equilibrium when

Moreover, the point of equilibrium can be tuned with a parameter gamma



Boundary Equilibrium Generative Adversarial Networks

(quality) 0  1 (diversity)



Boundary Equilibrium Generative Adversarial Networks

Convergence measure – Visual quality



InfoGAN



InfoGAN

Entangled Representation (hard to interpret) Disentangled Representation (easier to interpret)



InfoGAN

Example:

z1 axis corresponds to the “width” of digits

z2 axis corresponds to the “type” of digits

z1

z2



InfoGAN

Random 

noise (z)

generator

discriminator

Real

Fake

Training 

Data

Random 

noise (c)

Corresponds to semantic features

Just random noises

recognition 

network



InfoGAN



InfoGAN

Mutual Information: Measure of dependence between two random variables

 amount of information obtained about X through observing Y



InfoGAN

InfoGAN tries to maximize the mutual information of the latent code c and the output of G

Have no idea of probability density of G(z,c), but we know p(c)



InfoGAN

Variational Mutual Information Maximization

We can obtain a lower bound of the posterior p(c|G(z,c)

q is parameterized by an additional neural network



InfoGAN

Random 

noise (z)

Generator 

discriminator

Real

Fake

Training 

Data

Random 

noise (c)

Corresponds to semantic features

Just random noises

recognition 

network



InfoGAN

Random 

noise (z)

generator

discriminator

Real

Fake

Training 

Data

Random 

noise (c)

Corresponds to semantic features

Just random noises

recognition 

network

c



InfoGAN



InfoGAN



InfoGAN



Generative Moment Matching Networks



Generative Moment Matching Network



Generative Moment Matching Network

Random 

noise
generator

Training 

Data

Two-Sample Test

(Moment Matching)



Generative Moment Matching Network

Maximum Mean Discrepancy



Generative Moment Matching Network

Maximum Mean Discrepancy

Moment Matching



Generative Moment Matching Network

Training



Generative Moment Matching Network



MMD – GAN



MMD – GAN

Feature extraction before apply kernel trick



MMD – GAN

Random 

noise
generator

Training 

Data

Two-Sample Test

(Moment Matching)

additional 

kernel 

mapping 

network



MMD – GAN



MMD – GAN



MMD – GAN



Variational Autoencoder



Variational Inference

(1) Bayesian Inference Problem with Latent Variables

Prior Distribution of the Latent Variable z Likelihood of z given x

Evidence of x
Posterior Distribution of the 

Latent Variable z



Variational Inference

(1) Bayesian Inference Problem with Latent Variables

Prior Distribution of the Latent Variable z Likelihood of z given x

Evidence of x
Posterior Distribution of the 

Latent Variable z



Variational Inference

(2) Bayesian Approximate Inference

Monte Carlo Methods

Approximate Inference



Variational Inference

(2) Bayesian Approximate Inference

Monte Carlo Methods

Approximate Inference

Family of q
Measure of proximity



Variational Inference

(2) Bayesian Approximate Inference

Monte Carlo Methods

Approximate Inference

Naïve Monte Carlo

Rejection Sampling

Importance Sampling

Metropolis-Hastings

Gibbs Sampling

Reversible-Jump

Laplace Approximation

Expectation Propagation

Variational Inference



Variational Inference

(3) Variational Inference

Class of functions

Optimal Approximation
Target (Posterior)

What we do not know

 ????



Variational Inference

(3) Variational Inference



Variational Inference

(3) Variational Inference

Now we can solve the problem!

If q is parametrized by \phi,



Variational Inference

(3) Variational Inference



Variational Autoencoder



Variational Autoencoder



Variational Autoencoder



Variational Autoencoder

(1) VAE problem includes not only posterior (approximate) inference

(2) But also involves maximum likelihood inference of the generating process 

Based on the maximum likelihood principle, we want to maximize the marginal likelihood of \theta given data x

Maximizing the ELBO implies the following two:

a) Maximizing the marginal likelihood (for generating process, or the decoder)

b) Minimizing the KL divergence of the approximate from the true posterior



Variational Autoencoder

(1) Guide variational approximate posterior to match the prior p(z)

(2) Maximize the expected likelihood of the generative model given data x 

(or guide encoder-decoder to reconstruct the data)



Variational Autoencoder

encoder

𝑞𝜙(𝑧|𝑥)
decoder

𝑝𝜃(𝑥|𝑧)

z
μz

σz

μx

σx

x



Variational Autoencoder

Example 1: Gaussian Encoder – Gaussian Decoder VAE

encoder

𝑞𝜙(𝑧|𝑥)
decoder

𝑝𝜃(𝑥|𝑧)

z
μz

σz

μx

σx

x



Variational Autoencoder

Example 2: Gaussian Encoder – Bernoulli Decoder VAE

encoder

𝑞𝜙(𝑧|𝑥)
decoder

𝑝𝜃(𝑥|𝑧)

z
μz

σz

px x



Variational Autoencoder



Beta Variational Autoencoder



Beta Variational Autoencoder

encoder

𝑞𝜙(𝑧|𝑥)
decoder

𝑝𝜃(𝑥|𝑧)

z
μz

σz

μx

σx

x

sampling sampling

Vanilla VAE

Beta VAE

More weights on KL divergence term



Beta Variational Autoencoder

Entangled Representation (hard to interpret) Disentangled Representation (easier to interpret)



Beta Variational Autoencoder



Beta Variational Autoencoder



Adversarial Autoencoder



Adversarial Autoencoder

encoder

𝑞𝜙(𝑧|𝑥)
decoder

𝑝𝜃(𝑥|𝑧)

z
μz

σz

μx

σx

x

z

prior

𝑝(𝑧)
discriminator

True

Generated



Adversarial Autoencoder

VAE

AAE

Minimize the discrepancy between prior p(z) and aggregated posterior q(z)

Minimize the discrepancy between prior p(z) and posterior q(z|x)



Adversarial Autoencoder



Adversarial Autoencoder



Adversarial Autoencoder

and AAE



Adversarial Autoencoder

AAE Basic Form

Supervised AAE

Semi-Supervised AAE Dimensionality Reduction AAE



Wasserstein Autoencoder



Wasserstein Autoencoder



Wasserstein Autoencoder

WAE problem



Wasserstein Autoencoder

WAE problem

WAE – GAN

WAE – MMD



Wasserstein Autoencoder

VAE WAE-MMD WAE-GAN


