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Introduction

% Introduction to Autoencoder
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Introduction

«»» Autoencoder for what?
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Introduction

% Manifold Learning
« Autoencoder for generative model

«  manifold
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Introduction

% Manifold Learning
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Introduction

%+ Generative Model

« Autoencoder for manifold learning

« Autoencoder for generative model
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Types of Autoencoders

o CHFSE Autoencoder
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Types of Autoencoders

o CHFSE Autoencoder

»  For manifold learning : Autoencoder2| It& gt M| E o}l ZSt~| {8 Ctd X 78S &
&5tz 130 AM 0f2f HFOf Iy

Autoencoder

For

For
manifold learning

Generative modeling

»  Sparse Autoencoder
« Denoising Autoencoder
«  Contractive Autoencoder

Data Mining
KOREA ...\.

UNIVERSITY Quality Analytics



Types of Autoencoders : for manifold learning

+* Bias-variance tradeoff in autoencoder

e Total Error = Bias? + Variance + Irreducible Error
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Types of Autoencoders : for manifold learning

+* Bias-variance tradeoff in autoencoder

e Total Error = Bias? + Variance + Irreducible Error
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Types of Autoencoders : for manifold learning

+* Bias-variance tradeoff in autoencoder
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Types of Autoencoders : for manifold learning

+* Bias-variance tradeoff in autoencoder
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Types of Autoencoders : for manifold learning

+* Bias-variance tradeoff in autoencoder
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Types of Autoencoders : for manifold learning

% Sparse Autoencoder
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Types of Autoencoders : for manifold learning

% Denoising Autoencoder
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Types of Autoencoders : for manifold learning

%+ Contractive Autoencoder
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Applications of autoencoders

«» Use of autoencoders
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Applications of autoencoders

» Use of autoencoders for classification
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Applications of autoencoders

» Use of autoencoders for classification
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Applications of autoencoders

» Use of autoencoders for classification

« SiT : Self-supervised Vision Transformer
*  Vision TransformerS ZH-& 9t self:supervised leamning & H = 72

e Transformerl| #+ZXX O|&™ S =250 O}X| AutoencoderXE =283t =&

SiT: Self-supervised vision Transformer
Sara Atito, Member IEEE, Muhammad Awais, and Josef Kittler, Life Member, IEEE

Abstract—

Self-supervisad learning mathods are gaining increasing traction in computar vision due o thair recent succass in reducing the gap
with suparvised learning. In natural language processing (MLP) self-supervised learning and transformears are already the methods of
choice. The recent literature suggests that the transtormers are bacoming increasingly popular also in computer vision. Sa far, the
vision transformers have been shown to work well when pretrained either using a large scale supervised data [1] or with some kind of
co-suparvision, e.g. in tarms of teacher network. These suparvised prafrained vision transformers achieve very good resulls in
downstream tasks with minimal changes [1], [2], [3]. In this work we investigate the merils of self-supervised learning for pretraining
image/vision transformers and than using them for downstream classification tasks. We propose Self-supervised vision Translormears
(SiT) and discuss seweral self-supervised training mechanisms to obtain a pretext model. The architectural flexibility of SiT allows us to
use it as an autoancoder and work with multiple self-supervised tasks seamlessly. We show that a prefrained SiT can be finetuned for a
downstraam classification task on small scale datasets, consisting of a few thousand imageas rather than savaral millions. The propased
approach is evaluated on standard datasats using commaon pratocols. The resulls demonstrate the strength of the transformers and
their suitabdity for self-supervised learning. We outperformed existing self-suparvised learning methods by large margin. We also
observed that SiT is good for few shot leaming and also showed that it is learning useful representation by simply training a linear
classifier on top of the learned features from SiT. Pretraining, finetuning, and evaluation codes will be available under:

hitps2/github com/Sara-Ahmed/SiT.

Linear Pr(;]ecnon to lma%c Space
CNN base Decoder 42 2| FC layer
1 1 1 1

Index Terms—Vision Transformer, Sali-suparvised Learning, Discriminative Learning, Image Classification, transformer based
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Applications of autoencoders
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Applications of autoencoders

% Use of autoencoders for clustering
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Applications of autoencoders

% Use of autoencoders for anomaly detection
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Applications of autoencoders

% Use of autoencoders for dimensionality reduction
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Summary

% Summary of Autoencoder
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