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Statistical Inference

Population Sample (Data)

Parameter

Sampling/Experiment

Inference

Statistic



Bayesian Inference



Bayesian Inference

Bayes’ Rule

Posterior

Prior

(Assumption)
Likelihood

(Model)

Evidence

What we know: Likelihood, Prior (Model/Assumption)

What we do not know: Posterior, Evidence

What we want know: Posterior



Bayesian Inference

Coin Flipping Example

• We have a coin and want to infer the probability of “Head” when the coin is flipped  

Model

Observation (data)

H H H

Probability of Head:



Bayesian Inference

Coin Flipping Example

• Frequentist Approach: Maximum Likelihood Inference

Likelihood Function

Maximum Likelihood Estimation

Likelihood function is maximized at



Bayesian Inference

Coin Flipping Example

• Frequentist Approach: Maximum Likelihood Inference

But we all know that the probability of Head is not 1…

Frequentists will say “We have to collect more data”

H H H T H T

T T H T H H



Bayesian Inference

Coin Flipping Example

• Bayesian Approach: Posterior Inference

Prior

Likelihood Function

We may assume the probability of 

“Head” is nearly 0.5



Bayesian Inference

Coin Flipping Example

• Bayesian Approach: Posterior Inference



Bayesian Inference

Coin Flipping Example

• Bayesian Approach: Posterior Inference



Bayesian Inference

Coin Flipping Example

• Bayesian Approach: Posterior Inference

H

H

H

Prior Data Posterior



Bayesian Inference

Coin Flipping Example

• Bayesian Approach: Posterior Inference

Maximum a posteriori (MAP)

Posterior distribution is maximized at mode which is 0.5714

Posterior Distribution



Bayesian Inference

Coin Flipping Example

• Various Priors

Larger search space Smaller search space



Bayesian Inference

Coin Flipping Example

• Various Priors

Informative Prior Noninformative Prior



Bayesian Inference

Coin Flipping Example

• Posterior Inference with Noninformative Prior

H

H

H

Prior Data Posterior

(mode at 1)



Bayesian Inference

Coin Flipping Example

• As we collect more samples…

Posterior

MAP

As sample size increases

(MAP MLE)



Bayesian Inference

Example: Bayesian Linear Regression

• with fixed variance of random noise



Bayesian Inference

Example: Bayesian Linear Regression

• with fixed variance of random noise

Small alpha Large alpha



Bayesian Inference

Example: Bayesian Linear Regression

• with fixed variance of random noise

Prior

Likelihood



Bayesian Inference

Example: Bayesian Linear Regression

• with fixed variance of random noise

Posterior



Bayesian Inference

Example: Bayesian Linear Regression

• with fixed variance of random noise

or.. use predictive posterior distribution



Bayesian Inference

Example: Bayesian Linear Regression

• with fixed variance of random noise

Pointwise Prediction: Xnew  value of y hat

Predictive Distribution: Xnew  distribution of y hat

e.g.

y hat is 5

y hat ~ N(4.5, 1)



Bayesian Inference

Conjugate Prior

Coin Flipping

Linear Regression



Approximate Bayesian Inference



Approximate Bayesian Inference

Motivation

Bayes’ Rule

Evidence

This integration is not computable in general



Approximate Bayesian Inference

Methods for Intractable Posterior

True Posterior Sampling-based Approximate Inference



Approximate Bayesian Inference

Methods for Intractable Posterior

True Posterior Sampling-based Approximate Inference

Naïve Monte 

Carlo

Rejection 

Sampling

Importance 

Sampling

Metropolis-

Hastings

Gibbs Sampling

Reversible-Jump 

MCMC

Laplace Approximation

Expectation Propagation

Variational Inference



Approximate Bayesian Inference

Methods for Intractable Posterior

Monte Carlo Sampling Approximate Inference

• Monte Carlo sampling-based

• Samples drawn from the true posterior

(No function)

• High computational cost for large data set or 

complex models

• Optimization-based

• A function approximates the true posterior

• Computationally efficient even  if data set is l

arge or model is complex

• Accuracy of approximation is unknown

• Suitable for trying many different models on l

arge data set



Variational Inference



Variational Inference

Introduction

A family of functions

Posterior density function

Most similar function

(approximate posterior)



Variational Inference

Introduction

A family of functions (𝒬)

Posterior density function

Most similar function

(approximate posterior)

q*

Kullback-Leibler Divergence

(Similarity between two probability distributions)



Variational Inference

Introduction

Class of functions

Optimal Approximation

Target (Posterior)

What we do not know

 ????



Variational Inference

Introduction



Variational Inference

Introduction

Now we can solve the problem!

If q is parametrized by phi

prior likelihood



Variational Inference

Introduction

Evidence

(Constant)

KL Divergence

(Nonnegative)

Evidence Lower Bound (ELBO)

Evidence Lower Bound 

(ELBO)

KL Divergence

Evidence

Minimizing KL Divergence = Maximizing ELBO



Variational Inference

Introduction

1. Determine a variational family Q (Members of Q should be tractable)

2. Solve the optimization problem



Variational Inference

Introduction

1. Determine a variational family Q

 Mean-Field Variational Bayes (factorized density functions)

2. Solve the optimization problem

 Coordinate ascent (traditional), convex relaxation (recent study)

Factorized density functions



Variational Inference

Mean-Field Variational Bayes

• Bayesian Linear Regression

Parameter of interest: beta & alpha

= We want the posterior distribution of beta & alpha

Likelihood (linear model)

Prior



Variational Inference

Mean-Field Variational Bayes

• Bayesian Linear Regression

Introduce variational distribution q, assuming factorized 

Arbitrarily chosen

We “use” these density functions

as approximators



Variational Inference

Mean-Field Variational Bayes

• Bayesian Linear Regression

Introduce variational distribution q, assuming factorized 

We want to solve the following optimization problem



Variational Inference

Mean-Field Variational Bayes

• Bayesian Linear Regression

Usually, coordinate ascent is used to maximize this problem



Variational Inference

Mean-Field Variational Bayes

• Bayesian Linear Regression

*   Coordinate Ascent/Descent: Move along one axis (optimize w.r.t. one variable) at each step

x2

x1



Variational Inference

Mean-Field Variational Bayes

• Bayesian Linear Regression

Global Optimal

Local Optimal

Coordinate ascent/descent is not guaranteed to converge global optimal for nonconvex optimization problem

local optimal  may not be small enough KL divergence  not good approximation



Variational Inference

Convex Relaxation for Variational Inference (ICML 2018)



Variational Inference

Convex Relaxation for Variational Inference

• Bayesian Linear Regression

Utilize convex relaxation instead of coordinate ascent to find a better solution of the problem



Variational Inference

Convex Relaxation for Variational Inference

• Bayesian Linear Regression

Utilize convex relaxation instead of coordinate ascent to find a better solution of the problem

• A better solution (higher ELBO) than coordinate ascent in several cases

• Theoretically proved optimality gap (solution quality can be measured)

• Relatively slower but not significantly slow

• NOT as simple as coordinate ascent

• Remarkable trial to converge optimization and statistics



Variational Inference

Convex Relaxation for Variational Inference

• Bayesian Linear Regression

Utilize convex relaxation instead of coordinate ascent to find a better solution of the problem

Main Idea: Nonconvexities usually originated from polynomial terms

 Polynomial terms can be represented by quadratic terms

If all the matrices Ak, k=0, …, K are positive semidefinite, the problem is convex 

(but usually not)



Variational Inference

Convex Relaxation for Variational Inference

• Bayesian Linear Regression

Utilize convex relaxation instead of coordinate ascent to find a better solution of the problem

The problem can be reformulated as follows:

Nonconvex part



Variational Inference

Convex Relaxation for Variational Inference

• Bayesian Linear Regression

First, reformulate the problem as follows



Variational Inference

Convex Relaxation for Variational Inference

• Bayesian Linear Regression

Nonconvex terms are in the first two lines

Nonconvex

Convex



Variational Inference

Convex Relaxation for Variational Inference

• Bayesian Linear Regression

Utilize the following vector,



Variational Inference

Convex Relaxation for Variational Inference

• CRVI vs. CAVI



Variational Inference

Convex Relaxation for Variational Inference

• CRVI vs. CAVI



Variational Inference

Convex Relaxation for Variational Inference

• Variational inference transforms an inference problem into an optimization problem

• For most models, associated variational optimization problem is highly nonconvex

• CRVI guarantee very tight relaxation bounds that get nearer to the global optimal solution than traditional 

coordinate ascent

• Good example of the convergence of statistics and optimization technique


