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Abstract

Deep learsing tools have gained tremendous al-

x m apphed machine leaming. However
such wols for regression und chssificarion de
B0t capure model uncertinty. In compari-
Bayesian models offer 3 matbematically
Erounded framework: 1 reason about model un-
but usually come with a probibitive
computationl cost. I this paper we develop 3
mew theoretical framework casting dropout rain-
ing in e neural etk (NNs) = sppons
a2 Bayesian inference in o n pro-
Counes, A divees esul of his dheory gl\n s
tools 10 model unceriinty with drope
extracting information from existing n..uu\ et
has been tirown away o fas. Th
the probiem of repres: ncerainey in deep

(G279 EAM.AC.UK
201 0CAM.AC.UK

o & Marks, 2015; Nuzzo,
deep leaming weols.

14), new nees arise fror

Stumbard deep learing tools for regression and classifica-
tioa do ot caplure model uncertanly. I claslication,
predictive probabilities vbtained at the end of the pipeline
(the softmax ouput) are ofien erromeously mterpreted s
model comfidence. A el can be uncertain in its predi

tivas even with 3 high softmax ouput (g, 11. Passing a

point estimate of a function (solid line 13) through a sofi-
ma solid line 1b) resalts in extrapolions with unjustified
hig

confidence for points x from the trainig data. = for
cample would be classified as cliss | wih probability 1
However, pussing the distribution (shaded ares 13) through
s, s a1y bt et ciicaton o,
certainty far from the training

Mol csruiony s Sdiucathi st deap e
well. Wi we can

eomplexity or test securacy. We perform un ex-

of the properties of drmpout’s un.
enainty. Various network architectures and non-
linearities are assessed un tasks of regression
and classification, using MNI example.
Wi show a considerable improvement in ped-
ikelihood and RMSE compared lo
isting state-of-the-ant methes, and finish by us-
ing drupour's uncersainty in deep reinforcement
Searnis

tensive stud

1. Introduction

Deep learning has altracted tremendons atlention from e
carchers. in fleld such s physics. biolo

turing, 1o name a few (Baldi etal 2014; Anjos etal . 3015
Be 1), Tools such as neural networks
NNs), dropout, comvolutionl neural merworks (eomvnets),
and vabers are used exiensively. However, these are fields n
which representing model uncertanty i of crucial impo

tance (Keaywinski & Altman, 2013 G 15).
With the recent shiftin mrany of these fiekds towards the wse

-

of Bayesian uncertainty (Herzog & Ostwald, 2013; Tra

oo s of the 3974 fnternasional Conference o Machin
Luaraing. New Verk, Y. TSN 2016, TMLR. WECF e
45, Copyright 2016 by the amhosts),

treat uncertasn nputs o special cases explcitly. For ex-

10 pass the input 1o 2 human for
huppen in a pust offce, sorting ltters according ko theis 2ig

nepesviis, 2010). With uncentsinty information s agent
can decide when to exploit and when to explore ils env

ronment. Recent advances in RL have made use of NNs for
e function approsimation. These are functions th

tienasz the quality of different actions an agent can take.
Epsilln greedy search is often used where the agent selects
s best action with some probubilly and explores othe

wise. With uncertsinty ectmates over the agent’s Q-value
fanction, techaigues such a3 Thompson sampling (Thomp-
son, 1933) can be used 10 learn much faster

Bayesian probability theory offers us mathenatically
‘Erunded 1001 1 reason about model uncertaiaty, bul these
b & prohibitive computationsl cost. 1L is
perhups surprising then that

learning wols as Bayesian models — without chan
ing either the models or the eptimisation. We show th;
the e of dropous i v i NN can e i
preted as & Bayesian appeoxination of a well known prob-

E
2
i

Learning for Computer Vision?

Gal
Lm\enn) of Canridge

Alex Kendall
University of Cambridge
3 - 798can.ac. uk

Abstract

Mhere are tso major types of uncertainty one can model. Aleaioric uncertainty
e vt mberen o ortion O the oer - o whce
ity aceounts for uncertainty in the model — uncertainty which can be explained
vay given enough data. Tradionaly it has been diffcul 1o model epstetic
sy in compur ision. b wilh nev Boyesian dep earing (ol s
is now fits of modeling epistemic vs. aleatoric un-
n .“,Mn M’ carming mocdels vk Gk, For this e presen
aBayesi ¢ framework combining input.dependent aleatoic uncer
ety wgether with eptemic uncerainty. We study models under he Framework
it perpise semapic segmentaion and depth egrssion sk Fa nher o
xplicit uncertainty forn leads to new loss functions for thes
can be interpreted a5 et ﬂlenwunn his makes th os mors pivers my
data, 1150 giving new
benchmarks.

mmm,

1 Introduction

Undersanding what  model doss ot kv i it part of many maching eaning ysems
Today. deep lea leam powes ‘map high di-
mensional data (o an unu) o outputs Hoverer o nuppms\u{z e ke o adly and assumed
10 be accurate, which is not always the case. recent examples this has had disastrous con-
sequences. In May 2016 there was the first fatality from an assisted driving system, caused by the
percepion system confusing the whit side of e fo Pight sy 11 In a second recent ex-

erron African Americans as gorillas [2
raising concerns of racial discrimination. If both these algorithms were able (o assign 4 high el

G uncertainsy 1o hel amroncous predicions, then the syslm may have been able 1o make

decisions and likely avoid disaster

Quantifying uncertainty in computer vision applications can be largely divided into regression set-
tings such as depth regression. and classification settings such as semantic segmentation. Existing
approaches 1 modslunceraiaty n such etings.in compute vison inclde partle feing and

vl rndom felds [, 41 However many modem appications mandate the weofdeep learn-

ith not able to represent
un:enmmv eep m.m..-. does not allow mr untemmw represeiaton i regresion setings or
I

o not
ecemirly coptune ey P Boh setings Uncer can b copred i ipesin
deep Leming approcches  whic o  praccal ek Lo udersanding unceriny
p learning models (6

n mye»mn modeling, there are two main types of uncertainty one can model [7]. Aleatoric uncer-
sy captes o lren i the obervatons. Tis coud bl example srsor o o moton

oise. resulting in uncertainty which cannot be reduced even if more daia were o be collected. On
h oler R pitemc uneerinty cEousfor Uncersry i (he ode] parameers — uertiny

315t Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.
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Abstract

Daep neural networks (NNs) are powerful black box predictors that e recently
REved s aiormanck on s wide speciruor k. Guamiine p
i ancerany inNNs i challenging andyt urslvd robiem. Baye
NN, which learm a distribution over ¢ currenily the state-of the

for
tions 1o the training procedure and are computationally ompared
standard (non-Bayesian) NNs. We propose an al rmaive 1o mve\un NN that
is simple to implement, readily parallelizable, requires very it nypa-rpmn-w
tuning. and yids high quality predictive uncerainty estimaies. Through a er

that

curmethod proches welcalbrted ummmw estimates which are as good or

better than appmxlmm “To assess robustness (0 dalasel mm we
evaluate the v um(\'lumlv o fest examples from know,

distibutions Pindshow it o o 1 s 10 express higher umnamw on

We ity of our method by

evaluating predictive uncertainty estimales on ImageNeL

1 Introduction

Deep reural i vty of machine
leaning tasks [35] and are becoming increasingly popular in domains such as comy

[ cchrecoanilion [25], atural nguage processing 142, and biomfomatics [2 61}, Despite
Impresie sccurcie n supervised keaming benchmarks, NN are oo at quantily g predicive
uncertainty predictions. Overconfident inco be
Rt o offensive (3], bence rope ucercy quanticaton 5 Crcia o pracacal pplcadons.

aluating 0 redictive uncertainties is challer
lsumams e usialy ot avalable. I his work. we shal fos
ied by practical applications of NNs
fmuuumulnuu onof uncertaity which messues he crpancy e subeciive omcastsan
(empirical) long-run frequencies. The quality of caibration can be me; y proper scaring rules
17T such as o prdics probabiles and e ke scone (9 Nkt caliaon s ancrwgonel
concem to aceuracy: & network's predictions may be accurate and yet miscalibrated, and vice versa.
“The second notion of quality of we consider the
predictive uncertainty 10 domain shifl (also Teferred to as out-of.listribution exampies [13)). that
measuring if the network knows what it nonws. For exampie, if a retwork trained on one dataset is
aluted ona compltly it datet, then the petvorkshoukd otput i prdict uncertany
as inputs from a difereai dalaset would be far away from the training data. Well-calibrated predictions
that have a number of

r
weather forecasting, medical diagnosis).

315t Confercnce on Newral Informstion Processing Systems (NIPS 2017), Loag Beach, CA, USA.
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I Introduction

Importance of Uncertainty
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B Introduction

Background

TAEkE WE, S AR IREN E QA FF, AUSAIE At 50| TE

Google Photos, y'all fxcked up. My friend's not a gorilla.

Gorillas Graduation

https://news.joins.com/article/18159469
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Importance of Uncertainty
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Intuition of Uncertainties
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Intuition of Uncertainties

% Classification + Uncertainty estimation
> QEMAUA REUM 2HKI0A 28 Hots Metolr| flet

|O

MNEE 7 IECE &8

Uncertainty &30]|

OIS 2tE= HEolEAL
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Intuition of Uncertainties

+ Standard Deep Neural Networks

> Softmaxe logitdfS & UCE HelelO =M K|S2E0| &

Load P(y = load) = 0.5

Sky  P(y =sky) = 0.2

Car P(y=car)= 03
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Intuition of Uncertainties

+ Standard Deep Neural Networks

> Softmaxe logitZtS &8 24O 2 HEISIO 24 0| S350 &
> OSSES uncertainty0| CH3H X|E 2 &S E XAt

Load P(y = load) = 0.5

Sky  P(y =sky) = 0.2

Car P(y=car)= 03

High Uncertainty, if argmax P(y) < 0.6
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Intuition of Uncertainties

+ Standard Deep Neural Networks
> Softmax=FEH CEF OS2 42, 2ot =2 8= H0l= 82 EX “overconfidence”
|
=]

> OSEES uncertainty2 &6t A2

Load P(y = load) = 0.8

P(y =sky) =0.1

P(y =car) = 0.1

High Uncertainty, if argmax P(y) < 0.6
Reject
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Intuition of Uncertainties

* Bayesian Neural Networks

> OIS0 CHet uncertaintyS 5

oz
Ol
Fl'F
N
S
10
=

> 0= 2 2 =X5tA 0l

— HAZ=

Load P(y = load) = 0.8

08 0.6 03
05 08 04

0343

Var(y)

»
»

03 0.6 0.9
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Intuition of Uncertainties

“ Bayesian Neural Networks
> oS0 CH3t uncertaintyS 8o

=
> OI53US IS 2L US

FI'F

A0 =H
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Intuition of Uncertainties

** Bayesian Neural Networks Results
» Point: train data points
> Black line: yipqt
> Blueline: E(Yest), Blue shade: Var(yipq:)

& average loss: 0.1213279719871894

Ytest

Xtrain» Ytrain

Confidence interval = Uncertainty

http://mlg.eng.cam.ac.uk/varin/blog_3d801aab32¢1ce.html
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Intuition of Uncertainties

** Bayesian Neural Networks Results
» Point: train data points
> Black line: yipqt
> Blueline: E(Yest), Blue shade: Var(yipq:)

4 average loss: 0.09582627428797477

Ytest

Predict low uncertainty

Predict high uncertainty
New train data points

Predict low uncertainty

ﬂﬂ Xtest
Linl b >

http://mlg.eng.cam.ac.uk/varin/blog 3d801aa532¢1ce.html
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Bayesian Neural Net =H

Uncertainty &0t
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B Introduction

Types of Uncertainties If there's ketchup, it's a hotdog
@FunnyAsianDude #nothotdog
#NotHotdogchallenge

< Epistemic uncertainty (model uncertainty)
> THO| G|O|E0f| CHAH Ot MBSHA S =|A=XI0] CHOH 2E= HE
> 0|2 O EXS s&oH=X|0f tio 2E2= HE

> O W2 00|57} e&EICtH =Y o~ 13, reducible uncertainty

Jon

% Aleatoric uncertainty (data uncertainty)
> O|O|E{0f| LHAHEI L-0| X2 QI5H O|5HoIK| Zoh= M=

(e.g. measurement noise, randomness inherent in the coin flipping)

—~ : : -
> [ ©2 H0|e7t eksk|E2te S 4= 813, imeducible uncertainty T T, i
> 2% HUCS E0/0 34U

Kendall, A., & Gal, Y. (2017). What uncertainties do we need in bayesian deep learning for computer vision?. In Advances in neural information processing systems (pp. 5574-5584).
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Types of Uncertainties

< Epistemic uncertainty (model uncertainty)
> THO| G|O|E0f| CHAH Ot MBSHA S =|A=XI0] CHOH 2E= HE
> 0|2 O EXS s&oH=X|0f tio 2E2= HE

=]
> ope SECE 2 4 98

Lol_

G017t

Jon

“* Why Epistemic uncertainty?

> Epistemic uncertainty= SE5C|0[E{7} £

> O =35MAIMO polo

i
~

5
o
o
i
2

-

, reducible uncertainty

Graduation

Google photo 2%

Zot0] SEk|X| 2 SEIS AEE = V| 20 S

—

Kendall, A., & Gal, Y. (2017). What uncertainties do we need in bayesian deep leaming for computer vision?. In Advances in neural information processing systems (pp. 5574-5584).

>t hcal

Q.. Daota Mining
ob Quallity Anailytics

30| &L= 2lo|=, 2HH0] S 2ot EMS M =4 2




- Introduction
Types of Uncertainties
% Aleatoric uncertainty (data uncertainty)

> O|0|E{0f| LHXH=I L-0| =2 Q15K O|5HSIK| Zoh= M=

(e.g. measurement noise, randomness inherent in the coin flipping)
irreducible uncertainty

Tesla A3 At

> O 242 H0|E} SIS EICiRIE 5 4 ¢S,
> EYYUCS 03 Y4 YS

Eliolz 89 82

5 OS] L0|=7t =A|
et 1HE0] 710

“* Why Aleatoric uncertainty?
> Aleatoric uncertainty= A& AZH0| A2t Z0] YL
> O|X7} Z H|O|E{0fl CHoH ShELPH0IA MIekS Foet = OB OlS ds

Kendall, A., & Gal, Y. (2017). What uncertainties do we need in bayesian deep learmning for computer vision?. In Advances in neural information processing systems (pp. 5574-5584)
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Importance of Uncertainties

Nearly all applications !
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deep leaming weols.
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Abstract

e i ol + mamaiedly  Hoe ahoro s s ey e O —
o Byoan ol ol < ey 5, curut e oen eroneonly iy i oy AR D e o (N s e o e sy
consinty, but ussally come with 3 probibitive tainty accounts for uncertainty in the model - uncertainty which can be explained ahived. lmprm\l\o ;xrmmum- on a wide spectrum of tasks. Quantifying pr

computationl cost. I this paper we develop 3
mew theoretical framework casting dropout rain-

in deep neursl nevworks (NNs) = approxi
maste Bayesian inference in deep
cesses. A disect resul of this theory gives s
tools 10 model uncertiny with dropout
envacing nformation from exitin odels it
has been tirown away o fas. Th
the probiem of regresensing uncertaincy in deep

b softmax output (fig. 1). Passiag 3

point estimate of a function (solid line 13) through a sofi-

ma (solid line 1b) resaults in extrapolaio
alidence for points far from the 15

cample would be classified as cliss | wih probability 1

However, pusss

a softrmax (shaded area 15) better r

Madel uncertsinty is indispensable for the deep learn

well. With esnd we can

eomplexity or test securacy. We perform un ex-
tensive sty of the properties of dropoul’s un-
enainty. Various network architectures and non-
linearities are assessed un tasks of regression
ANIST a5 an example.
predic-
ikelihood and RMSE compared 1o ¢
isting state-of-the-ant methes, and finish by us-
dropour's uncertainty in deep resnfoncement
Searnis

1. Introduction

Deep learning has sltracted tremendons atler
wearch

tance
With

of Bayesian uncertainty (Herzo

hers in fielde such 3 physics. biolo

and m
turing, 1o name a few (Baldi etal 2014; Anjos etal . 3015
Be

1), Tools such as neural networks
cavalutionsl neural networks

ating
(Kesywindks & Altsman, 2013 €
the recent abift in many of these felds towards the wse
& Ostwald, 2013; Trat-

=

mational Conference on Machine
ek Y. TR 3018 IR WA et

ot v vy e e

repesviin, 2010). With uncensinty information s age

can decide when to exploit and when to explore ils env
ronment. Recent advances in RL have made use of NNs for
o approsimation. These are functions th
aimmase the quality of diflerent sciions an agent can take.
Epsilln greedy search is often used where the agent selects
s best action with some probubilly and explores othe
wise. With uncertsinly eshmates over the .
fanction, techaigues such a3 Thompson sampling (Thomp-
son, 1933) can be used 10 learn much faster

Quuslue

Bayesian probability theory offers us mathenatically

b & prohibitive computationsl cost. 1L is
perhups surprising then that # is possible 10 cast recen

deep learning tools o Bayesian models — without chan,
i either the madels or the eptimisation. We show th;
the e of dropout (und s v INs can be inter
preted as & Bayesian appeoxination of a well known prob-

vay given enough dat. Traditonaly it s becn difcull o mode cpstemic
sty i conpuer vision. but wih pew Baycsian decp leaming tols this
udy the benefits of me epistemic vs. aleatoric un-

in HJ)e»un aep ‘em.m ol for i . For i we presens

aBayesi learning n.memm“mm ping input dependent siestori uncer

ey wgther with ep i ncertaney. We sudy models e fra

il perpixl senaatic semention s ond i regresson tasks. Furier, o o

leads to new loss functions for these tasks, w

e mmpmeﬂ e iamed aA(enwunn This ke th o mors ot o l\nhy

data, also giving new

benchmarks.

mmm,

1 Introduction

Undersanding what a model dos not know s crial part of many machine eaming systes.
foday, deep lea m pow ‘map high di-
eons ey unu) o outputs Honcre o nuppms\u{z e ke o adly and assumed
10 be acurc, whih i no vyt cus, 1 o recent exanples his s ad disastrous con-
sequences. In May 2016 there was the first fatality from an assisted driving system, caused by the
percepion system confusing the whit side of e fo Pight sy 11 In a second recent ex-
erroneous! African Americans as gorillas [2
raising concerns of racial discrimination. If both these algorithms were able (o assign 4 high el
G uncertainsy 1o hel amroncous predicions, then the syslm may have been able 1o make
decisions and likely avoid disaster

Quantifying uncertainty in computer vision applications can be largely divided into regression set-
tings such as depth regression. and classification settings such as semantic segmentation. Existing
s to ol sty in sl sting n compier o nloe priele Ao and
vl rndom fiekds 3,41 However many modem appications mandate e weofdep lear:
Xt ith gt
mcemiy e e does ot llow mr unEean oty mpreentton n regaion sekiogs o
mpl ofte core vectors, which do ot
Seceaily e ode oy For o slingS uncnam ca b Sapred Wth Bosn
dep !.-umm\r approaches — which offer a practical framework for understanding uncertainty
Learning models (6],

n mye»mn modeling, there are two main types of uncertainty one can model [7]. Aleatoric uncer-
sy captes o lren i the obratons. Tis coud be for exampe srsor o o o
fetng n uncerzaty which cannot b educed vn i o dals wee 0 be cllecid On

he iher hand, episemi¢ unceninty accounts Fo unceraity in the model parameters - unceranty

315t Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

icive morrtainey in NN o2 challengingand et ursoved panm e
NN, which leam a distribution over weighis. of the.

for 1t madi
tions 1o the training procedure and are computationally expensive comparad to
standand (non-Bayasian) NNs. We propose an allernaive (o mw\un NN that
is simple to implement., readily paralleliZzble, requires very itk hyperparameter
tuning. and yi ds high quality predictve uncerainy estimaies. Througha srics

that

our method produces wall_calibrated uncertainty estimates which are as good or

better than spproximate Bayesian NNs. To assess robustness (0 dataset \mn we

evaluate the predictive uncertainty on t2st examples from know:

distibutions, and show that our method is able 10 express higher incemtanty on
We wur method by

evaluating predictive uncertainty estimales on ImageNeL

1 Introduction

Doxprenal aetorks (NN v e sa-of -t prtomnance o  whe vaeyofmachie
leaming tasks [35] and are becoming increasingly popular in domains such as computer vision
[ ch recoanition [25], natural language processing [4: cimformatics [ £1]. Despte
improssive accuracies in supervised keaning benchmarks. NN are poor at quantifyng prediciive
unCetin, ad 1o prodice rerconient prdicions. Overconfl ncomect prdicioms canbe
harmful o offensive [3]. hence proper uncertainty quantification is crucial for practical applications.
Evaluati redictive uncertainties is challenging as the ‘ground fruth’ uncertainty
‘s“mﬂbbﬂﬂ lhunhv “hot fvaizble. I this work, e shall foots upen o valuation measures tha
> motivated by practical applications of NNs. Firstly, we shall examine ealibration [12. 13], a
fmuuumnlnuunn of uncertainty which measures the discrepancy between subjective forecasts and
(empirical) long-run frequencies. The quality of calibration can be measured by proper scaring rules
107] s 2 o predicne probbilies and e it scone [9), Nets that s s ancrthogonsl
concem to aceura oS predctions may he eurse 48 et mscalibraied 3 ce sera.
‘The second notion orqnau of we consider the
predictive uncertainty 10 domain shifl (also Teferred to as out-of.listribution exampies [13)). that
measuring if the network knows what it nonws. For exampie, if a retwork trained on one dataset is
aluted ona compltly it datet, then the petvorkshoukd otput i prdict uncertany
as inputs from a difereai dalaset would be far away from the training data. Well-calibrated predictions
that are have a number of
(@2 weather forecasting. medical diagnosis).

315t Confercnce on Newral Informstion Processing Systems (NIPS 2017), Loag Beach, CA, USA.
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N

Frequentist way & Bayesian way

Bayesian

% Frequentist (B15=F2|X})
> DHo| MA0|Es DHE
Parameter is deterministic
> SE2 A BIZ(HO[R)E 7 [He=E =&
Probabilities are fundamentally related to

frequencies of events

» Linear regression

y=XB+e e~N(0,0%)

% Bayesian (H|0|X|29H)
> L9 Oieti|El 225 71
Parameter is stochastic
> S22 27 EL U= AR X[AHHIO0|H S
2ol =3
Probabilities are fundamentally related to
frequencies of events

» Bayesian linear regression
y=XB+e PB~N(Oa'l,)
e~N(0,0?)
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Frequentist way & Bayesian way

Bayesian Neural Networks

% Frequentist : Standard Deep Learning / Deterministic Deep Learning

1 X1
4 X y 3895 3895 3895 - 3895
T=1 T=2 T=3 - T=T
3 X3 Sot 2= 20| CHoliM= 22 0= 40| ==

y =389
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Frequentist way & Bayesian way

Bayesian Neural Networks

%+ Bayesian : Bayesian Deep learning / Stochastic Deep Learning

My M, M; Low variance
1 X1 SAN /X
4 X RO y 3895 3871 3767 - 3541

T=1 T=2 =3 - T=T

3 A A SUBH U YOl CHBIAE CHE 0% 20| =5

7 ~N(3895,102)
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Frequentist way & Bayesian way

Bayesian Neural Networks
%+ Bayesian : Bayesian Deep learning / Stochastic Deep Learning
M, M, High variance
. /\
3895 5948 1767 -+ 6750
T=1 T=2 T=3 - T=T

N
N

) ) =
D

X St = 240l CHoll M= CHE Of|= 20| ==
¥ ~N(3895,30002)
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Frequentist way & Bayesian way

Bayesian Neural Networks

HEA parameterl| L= FHN?

M, M;
N

7 X
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Frequentist way & Bayesian way

Bayesian Neural Networks

HEH| parameter?| 2= FHATN?

M, M, M; ' Likelihood  Prior
1 x ~ N a1 1y = PIE Wp(w)
' p(Y|X)
Evidence
4 X y
pOVIX) = | OV IX, W)W )
Evidence
3 X3 //\\ //\\ This integration is not computable in general
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Frequentist way & Bayesian way

Bayesian Neural Networks

HEH| parameter?| 2= FHATN?

M; M; M; Likelihood  Prior
1 ~ G E;jtle;‘”y) _ p(Y|X, Wp(w)
P T T
Evidence
4 X y

2ol2 EEE JHol,
W O|Z posterior?t H|=6tH| AL

3 X3 //\\ //\\ qo (W)

Variational distribution
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Frequentist way & Bayesian way

Bayesian Neural Networks

HEA parameterl| L= FHN?

M; M, M;
[ Variational inference
~ Kullback-Leibler Divergence
4 X y (F =EEE2| X{0[F AlLh
Posterior
qe(W)* = argmin KL(qe(W)|lp(W|X,Y))
3 X3 //\\ //\\ 9€ Q@ Variational distribution
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Frequentist way & Bayesian way

Bayesian Neural Networks

HEA parameterl| L= FHN?

M, M, M,
1 X1 /N N\
% MC Dropout
4 X9 y . . .
> < with L2 regularization
3 X3 //\\ //\\
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Dropout as Bayesian Approximation

% Loss function 2| (Appendix Z1T)

Minimize KL(qg(W)||lp(W|X,Y))

Maximize ELBO

N
= Minimize — Z f qo W) n (p(ilf¥ (x:)))dw + KL(qe (W) [p(W))
i=1
N
= Minimize -7 > In((i|f9 (x))) + KL(go (W)l [p(W))
IES

1 - o
= Minimize =2 In@@iIfI@d (x)) + AlIM4ll? + 221 M2l? + As]1b]2 9(6,8) = wy,

iES

Gal, Y. (2016). Uncertainty in deep learmning. University of Cambridge, 1, 3.
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Frequentist way & Bayesian way

Bayesian Neural Networks

HEA parameterl| L= FHN?

M, M, M,
1 X1 /N N\
% MC Dropout
4 X9 y . . .
> < with L2 regularization
3 X3 //\\ //\\
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Dropout as Bayesian Approximation

“ What is Dropout?
> 22 MrsHregularization) WHOZ, O|L|HIX|OIC FARI2 L& HE Z2

> p : keep probability, 1 — p : dropout probability

Standard Neural Net After applying dropout

N%
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Dropout as Bayesian Approximation

“* Neural Net without Dropout

> EE0IRS AE0HA| 2 Held 218|528 4% ot 0l FE HA0= Ti=t0]E 7t 18X

Training phase Testing phase

M, M,

&=
w
K
w
<
e
W %
S
w

X4 4 Xy 4
M: * Me
x5 x5
Y =Mix; +wWyXy + W3Xxg + Wex, + WeXs y* = Mix{ + Wyx; + waxs + wyxy + Wsxe
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Dropout as Bayesian Approximation

“* Neural Net with Dropout

> CE0128

> p : keep probability, 1 — p : dropout probability

Training phase
X
1 M,
X3 M >
Ms
X5
5; = M1x1 + + M3X3 +

Data Mining -~
o.:.o Quality Analytics r}-d

<

+ M5x5

= MEolk= Beld €112|58| R &5 01 £ HAM A= 1A Te0[Ho|| 7S] p

Testing phase

y* =pMix, + pMyx, + pM3x3 + pMyx, + pMsxs
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Dropout as Bayesian Approximation

“* Neural Net with MC Dropout

> DHO| SHSTFY #0t Ol 2 HHOME dropout 2

» T :the number of stochastic forward passes

Training phase
X
1 Ml
x3 1nvf3 >
Ms
X5
5; = M1x1 + + M3X3 +

Q.. Daota Mining
ob Quallity Anailytics

hcal

<

+ M5x5

Testing phase

T stochastic forward passes
M,
M3 ) y 1*

yl* = Mlxik + + 1\43.7(,5< + M4le<_ +
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Dropout as Bayesian Approximation

“* Neural Net with MC Dropout
> A0l sk £t OfL|2t =2 HAHMM T dropout X&E

» T :the number of stochastic forward passes

Training phase Testing phase
T stochastic forward passes
xl M, . M,

X3 M3 ? y v 372*
Xy 4
M5 MS
Xsg X5
y = Myx, + + M3x; + + Mcxc y," = Myx] + + + Myx; + Msx:
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Dropout as Bayesian Approximation

“* Neural Net with MC Dropout
> A0l sk £t OfL|2t =2 HAHMM T dropout X&E

» T :the number of stochastic forward passes

Training phase Testing phase
T stochastic forward passes
X1
M,
X3 1"vf3 v 57 X ; M 3 ’ 5; T>l<
M5 M5
X5 Xg
5; = M1x1 + + M3X3 + + M5x5 yT* = + szék —+ ]\43%;< + + 1‘45.7(:;<
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Dropout as Bayesian Approximation

“* Neural Net with MC Dropout

Ej(l)~Bern0ulli(p)
5(1) = E(l) * O(Z)

zi(”l) _ Ml_(l+1)5(z) + bi(Hl)

Wi(l+1)

> DRAO| SEEIPY 2at 0|2t :2 HAI0|M T dropout ME
yi(l+1) — f(Zi(l+1))

» T :the number of stochastic forward passes

Training phase

X
1 Ml
X3 1"v2'3 >
Ms
X5
5; = M1x1 + + M3X3 +

..:.. Data Mining e, l.\::d
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<

+ M5x5

Testing phase

5;1* = Mlxik + + ]\43.%%< + M4XZ +

+ Myxy + Msx:

92" |= Myxi + +
yr |= + Myx; + M3xj + + Mgx:
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Dropout as Bayesian Approximation

“* Neural Net with MC Dropout

> A0S U2 T H =5 0= 28 Qo ME

Testing phase

91" = Myxi +

9" = Myxi + +

+ Myx; + M3x; +

A
~
[l

hcal
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+ M3x3 + Myx, +

+ Myx; + Mgxs

+ 1\/15.9C'>5|<

ot
O
=
it

Zt
HA

T
1 _
E(y*) = ?Z Vi
t=1

T
1 SR
Var(y*) = 771 + TZ vi i —EQOTEW)
=1

pl?

T = 5N p:probability of units not being dropped

Epistemic uncertainty
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N

Dropout as Bayesian Approximation

¢ Loss function M2

€ O ~Bernoulli (p)

5(1) — E(l) * 0(1)

Zi(l+1) _ Mi(l+1)5(l) + bi(l+1)

(I+1)

[
yi(l+1) — f(Zi(l+1))
g(@, é) = Wl,i

1 .
Minimize == In(ilf90O xp) + A1 IMy13 + 2| MII3 + 431113
=
Regression: MSE |2 regularization weighted
Classification: Softmax cross entropy with MC dropout
M, M, M3
X1 /N N
X9 y

X3 X
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Atmospheric CO, at Mauna Loa Observatory

- BayeSIan Neural NetWOrkS o Il b e o
Dropout as Bayesian Approximation Results é sl |
“* Predictive mean and uncertainties on the Mauna Loa CO, dataset
320 "%:* {
> Red: AEII-” aAI- 110 19'70 19180 19I90 2(;00 . 20110 20'20§

YEAR

> Blue: 0= 2}
> Red line: & HI0|E2} =&06]| C}= &< O|0]E]

Mauna Loa CO, dataset before pre—processing

ol H|0[E SihE(]]=
/\ /_/R
o TN
20 T . T T

15} I i
10} I i
51 | i
0 MANANAAANNANANNAANNNAAAN NV, E
_5._ I .
—10L : i
—-15F i

_2[} 1 ] | | 1 | 1

-1 0 1 2 3 x*

Standard dropout
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Atmospheric CO, at Mauna Loa Observatory

- M
Scripps Institution of Oceanography !
400 - NOAA Earth System Research Laboratory i

Dropout as Bayesian Approximation Results

380

360 [

PARTS PER MILLION

¢ Predictive mean and uncertainties on the Mauna Loa CO, dataset
> Red: &H| 2t
> Blue: 01|§ 2t / Blue shade: G| 2t0f| CiSt 20 22| 712t (uncertainty &)
> Red line: et O|0|E2} S&F0o| CHE A& H|0]H

340

320, udrT 2k

' . §
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Mauna Loa CO, dataset before pre—processing
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Dropout as Bayesian Approximation Results

N

“* Average test performance in RMSE and predictive log likelihood

Daota Mining
Quallity Anailytics

N lyi-wll? 1

» RMSE (root mean squared error) = \/ %Z(yi — ¥i)?

a 1
> Log likelihood = — = 3j=1 =5 - loga™
Avg. Test RMSE and Std. Errors Avg. Test LL and Std. Errors

Dataset VI PBP Dropout VI PBP Dropout
Boston Housing 4.32 +0.29 3.01 £0.18 2.97 +0.85 -2.90+40.07 -2.57 +0.09 -2.46 +0.25
Concrete Strength 7.19 +£0.12 5.67 £0.09 5.23 +0.53 -3.394+0.02 -3.16 +0.02 -3.04 +0.09
Energy Efficiency 2.65 £0.08 1.80 +0.05 1L.66 +=0.19 -2.39 +0.03 -2.04 +£0.02 -1.99 +0.09
Kin8nm 0.10 £0.00 0.10 +0.00 0.10 £0.00  0.90 £0.01 0.90 £0.01  0.95 £0.03
Naval Propulsion 0.01 =0.00 0.01 +0.00 0.01 £0.00  3.73 £0.12 3.73 £0.01 3.80 £0.05
Power Plant 433 +£0.04 4.12 £0.03 4.02 £0.18 -2.89 £0.01 -2.84 +£0.01 -2.80 £0.05
Protein Structure 4.84 £0.03 4.73 £0.01 4.36 £0.04 -2.99 £0.01 -2.97 £0.00 -2.89 £0.01
Wine Quality Red 0.65 £0.01 0.64 +0.01 0.62 +0.04 -0.98 +£0.01 -0.97 £0.01 -0.93 +0.06
Yacht Hydrodynamics  6.89 £0.67 1.02 +0.05 1.11 #=0.38  -3.43 £0.16 -1.63 £0.02 -1.55 +0.12
Year Prediction MSD ~ 9.034 £NA 8.879 +=NA 8.849 £NA  -3.622 +NA -3.603 £=NA -3.588 =NA
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Dropout as Bayesian Approximation Critic

“* Uncertainty
> Dropout2 X25}0{ Bayesian neural net2 38O 2 M HE3S|0|| 7|ES OtA

X
SL=.
> DHO| 23IMMO| gpistemic uncertaintyS T

“* Model performance
» Dropout?} L2 regularization term= X&ol0{ overfitting= & X|, Hs 7HM
> LEo| 25Nl epistemic uncertaintyS P2 RZISH= IY0IM ESEl= T 712 0= 242 H sl

25 OIS 22 ArEol7| LZ0, outlierd| tiet 27H0| 715

¢ Disadvantages
> Dropout rate0f] 2|ZH01 At =

> DE £3H0| HHZ2 = U, standard neural netft2HLC} ek A[ZE @2 2
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What uncertainties do we need in bayesian deep learning for computer
vision?
AKendall, ¥ Gal - Advances in neural information processing ..., 2017 - papers.nips.cc

There are two major types of uncertainty one can model. Aleatoric uncertainty captures
neise inherent in the observations. On the other hand, epistemic uncertainty accounts for
uncertainty in the model-uncertainty which can be explained away given enough data ...

Ty B9 803% UE T EEXE HAH 1M7HY HE

< F=H™6}10X} k= uncertainty? | LS MIE25} E

» Aleatoric uncertainty as well as Epistemic uncertainty

< Computer vision tasksOfl M&
> CNN architecturedi| M& 75
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What Uncertainties Do We Need in Bayesian Deep
Learning for Computer Vision?

Alex Kendall Yarin Gal
University of Cambridge University of Cambridge
dunaeg_dr _i__l_k yg2T19@cam. ac.uk
Abstract

There are two major types of uncertainty one can model. Alearoric uncertainty
captures noise inherent in the observations. On the other hand, epistemic uncer-
tainty accounts for uncertainty in the model — uncertainty which can be explained
away given enough data. Traditionally it has been difficult to model epistemic
uncertainty in computer vision, but with new Bayesian deep learning tools this
is now possible. We study the benefits of modeling epistemic vs. aleatoric un-
certainty in Bayesian deep leaming models for vision tasks. For this we present
a Bayesian deep learning framework combining input-dependent aleatoric uncer-
tainty together with epistemic uncertainty. We study models under the framework
with per-pixel semantic segmentation and depth regression tasks. Further, our
explicit uncertainty formulation leads to new loss functions for these tasks, which
can be interpreted as learned attenuation. This makes the loss more robust 1o noisy
data, also giving new state-of-the-art results on segmentation and depth regression
benchmarks.

1 Introduction

Understanding what a model does not know is a critical part of many machine learning systems.
Today. deep learning algorithms are able to learn powerful representations which can map high di-
mensional data to an array of outputs. However these mappings are often taken blindly and assumed
to be accurate, which is not always the case. In two recent examples this has had disastrous con-
sequences. In May 2016 there was the first fatality from an assisted driving system, caused by the
perception system confusing the white side of a trailer for bright sky [1]. In a second recent ex-
ample, an image classification system erroneously identified two African Americans as gorillas [2],
raising concerns of racial discrimination. If both these algorithms were able to assign a high level
of uncertainty to their erroneous predictions, then the system may have been able to make betier
decisions and likely avoid disaster.

Quantifying uncertainty in computer vision applications can be largely divided into regression set-
tings such as depth regression, and classification settings such as semantic segmentation. Existing
approaches to model uncertainty in such settings in computer vision include particle filtering and
conditional random fields [3, 4]. However many modern applications mandate the use of deep learn-
ing to achieve state-of-the-art performance 5], with most deep learning models not able to represent
uncertainty. Deep learning does not allow for uncertainty representation in regression settings for
example, and deep learning classification models often give normalised score vectors, which do not
necessarily capture model uncertainty. For both seftings uncertainty can be captured with Bavesian
deep learning approaches — which offer a practical framework for understanding uncertainty with
deep learning models [6].

In Bayesian modeling, there are two main types of uncertainty one can model [7]. Alearoric uncer-
tainty captures noise inherent in the observations. This could be for example sensor noise or motion
noise, resulting in uncertainty which cannot be reduced even if more data were to be collected. On
the other hand, epistemic uncertainty accounts for uncertainty in the model parameters — uncertainty

315t Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.
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< Epistemic uncertainty (model uncertainty)
> THO| G|O|E0f| CHAH Ot MBSHA S =|A=XI0] CHOH 2E= HE
> 0|2 O EXS s&oH=X|0f tio 2E2= HE

o
> O U2 H|0|E{7} S EICHH S £ 912, reducible uncertainty a

Jon

Google photo LE%

% Aleatoric uncertainty (data uncertainty)
> O|O|E{0f| LHAHEI L-0| X2 QI5H O|5HoIK| Zoh= M=

(e.g. measurement noise, randomness inherent in the coin flipping)

> O Z2H0|g7t etk ete &Y 4= 818, ireducible uncertainty — 2 o
> SHHUTS HOHELSUAS Tesa X544 AL

Kendall, A., & Gal, Y. (2017). What uncertainties do we need in bayesian deep leaming for computer vision?. In Advances in neural information processing systems (pp. 5574-5584).
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Heteroscedastic uncertainty

. Aleatoric uncertainty {
I Bayesian Neural Networks Uncertainty Hormoscedastio uncertainty
Bayesian Neural Networks for Computer Vision — ;
Epistemic uncertainty

< Aleatoric uncertainty (data uncertainty) -
\ [

> GIOJE{O]l LIRHE! L-O| X2 QI3 O[3H5HK| RoH= M ﬂ |

_ . . . A

> O H2 0|57} esEH2te &Y 4= 818, irreducible uncertainty 4 \f“\ H |

\ ’ |

> 5% HUCE B0 5Y 4 S b/ |

'

“* Homoscedastic uncertainty

> A-IE El’E (I):!E—':ll 7I:IAI-O." EHOHA‘IE L0 8 Cons-tan-t7|'o XlLJ __
<+ Heteroscedastic uncertainty o
0 =) " . f T\“V“‘ Lo
> M= OHE Y 2o oM Tk 2kS XI'd, input-dependent uncertainty e, Ll Al il
> HEEE HOE, 0|27} 2 HIO[E0| CHol shE2k oM BEolE 4~ Us e o

Heteroscedastic uncertainty

Kendall, A., & Gal, Y. (2017). What uncertainties do we need in bayesian deep leaming for computer vision?. In Advances in neural information processing systems (pp. 5574-5584).
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{ Heteroscedastic uncertainty

Homoscedastic uncertainty

. Aleatoric uncertainty
I Bayesian Neural Networks Uncertainty {

Bayesian Neural Networks for Computer Vision

Epistemic uncertainty

+ Standard Deep Neural Networks

> Regression task

Yw (%)

Y (x) =13l
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Heteroscedastic uncertainty
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Homoscedastic uncertainty

Uncertainty

{ Aleatoric uncertainty {

Epistemic uncertainty

“* Density network architecture

» Regression task

After T stochastic forward passes

Ve (X) B
W — oA 2 E(y") = —zy ZE o= 2
th(x) = [yt, Oy ] Tt=1 t BA

We~q* (W) G2 5 (%)

Aleatoric uncertainty

T T
XY o 1 ~ 2 1 A2
Var(y*) = ?Zl% - Z TZ t
MC Dropout B B B

with L2 regularization Totaluncertainty ~ Epistemic uncertainty  Aleatoric uncertainty
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o = Heteroscedastic uncertainty
. eatoric uncertainty {
I Bayesian Neural Networks . Homoscedastic uncertainty
. - Uncertainty
Bayesian Neural Networks for Computer Vision — ;
Epistemic uncertainty
“* Density network architecture
> Loss functiond| heteroscedastic uncertainty Htgst0{ < 24715t BH 1=

Heteroscedastic uncertainty as learned loss attenuation

N
1 1 1
A —_— _ ] o . 2 = . 2
Fip@) | Lonw(6) = N_ZZU(W Iy, = FGI? +3 loga )
£

Wt AR $l ST 2 =
f (X ) ~— [y tr Ot ] Residual’s weight Uncertainty regularization
Wie~q (W) 6% 5 (%) - | |
Al » Residual's weight : Aleatoric heteroscedastic uncertainty/}
eatoric uncertainty 2 01|§ ﬁ,tOﬂ EH3H*'| reSIdualo I'|71| Iﬂ%
MC Dropout *  Uncertainty regularization : Aleatoric uncertainty”7} 2= H|0[E{0}|

with L2 regularization Cioll =eto] 7AXIE S&E MY
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Heteroscedastic uncertainty

Uncertainty

Homoscedastic uncertainty

{ Aleatoric uncertainty {

“* Density network architecture

> Loss function0i| heteroscedastic uncertainty £F

7% (x) = [y, 6,°

We~q* (W)

MC Dropout
with L2 regularization
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Epistemic uncertainty

Jol0 Lig Zet 22 1=

]

Gt W(.X')

Aleatoric uncertainty

Heteroscedastic uncertainty as learned loss attenuation

N
1 1 1
Ve (%) Lpnn(0) = NEW ly; — fFCe)I? +§log0(xi)2
i=1

Residual’s weight Uncertainty regularization

LL0|X7} 2 H|0|E (=2 heteroscedastic uncertainty” | GISE! 2))
0l CHBHA = lossOi| &1A| HtH
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Uncertainty

Aleatoric uncertainty

Heteroscedastic uncertainty

1

Homoscedastic uncertainty

“* Density network architecture

> Loss function0i| heteroscedastic uncertainty £F

7% (x) = [y, 6,°

We~q* (W)

MC Dropout
with L2 regularization
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Epistemic uncertainty

5101

275t By 1%

]

Gt W(.X')

Aleatoric uncertainty| * =027 &2 H|O|E{(X2 heteroscedastic uncertainty” | HISE

2001l CHolA = lossOfl 2A| 1S

Residual’'s weight

Heteroscedastic uncertainty as learned loss attenuation

N
1 1 1
Ve (%) Lpyn(0) = Nz% ly; — fCx)II? +51090(xi)2
i=1

Uncertainty regularization
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Epistemic uncertainty

“+ Computer vision tasks
> Depth regression (regression task)

» Semantic segmentation (classification task)

Original image Depth regression Semantic segmentation
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“* Depth regression
> E|IS=2|0f| CHet 0I=0| high aleatoric uncertainty

> 0|=0| E2l 520 high epistemic uncertainty

Input Image  Ground Truth Depth Aleatoric Epistemic
Regression Uncertainty  Uncertainty
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Epistemic uncertainty

* Depth regression performance with Make3D dataset
> Make3D dataset = &2, L0 CHet OO|X| C|O]E{A!
> 53471(345x460)X 0|0|X| H|0|E
> O0|IE=(R,G,B,D) 24

Make3D | rel | rms | logio NYU v2 Depth | et | s Jrogo | 8 | & | 4
- ac . Karsch et al. 0.374 | 1.12 | 0.134 - - -
. . 5
Karsch et al. 0.355 | 9.20 | 0.127 Ladicky et al. i i S| 542% | 82.9% | 91.4%
Liu et al. 0.335 | 949 | 0.137 Liu et al. 0.335 | 1.06 | 0.127 _ _ i
Li et al. 0.278 | 7.19 | 0.092 Lietal. 0.232 | 0.821 | 0.094 | 62.1% | 88.6% | 96.8%
aina of : : - - 5 Eigen et al. [27 0215 | 0.907 | - | 6L.1% | 88.7% | 97.1%
Laina et al. 0.176 | 446 | 0.072 Figen and Fergus 0.158 | 00641 | - | 76.9% | 95.0% | 98.8%
This work: Laina et al. 0.127 | 0.573 | 0.055 | 81.1% | 95.3% | 98.8%
DenseNet Baseline 0.167 | 3.92 | 0.064 . — T’OS ”‘”"0 R B MR Ty e
. : ai ; . . nseNet Baseline . . . 2% 1% 8%
N ‘gl‘?‘}:orl? L{}lce“;‘,m? g}gg :g; ggg}t + Aleatoric Uncertainty | 0.112 | 0.508 | 0.046 | 81.6% | 95.8% | 98.8%
+ Epistenuc uncertainty o). o A1 + Epistemic Uncertainty | 0.114 | 0.512 | 0.049 | 81.1% | 95.4% | 98.8%
+ Aleatoric & Epistemic | 0.149 | 4.08 | 0.063 + Aleatoric & Epistemic | 0.110 | 0.506 | 0.045 | 81.7% | 95.9% | 98.9%
(a) Make3D depth dataset [25]. (b) NYUv2 depth dataset [23].

http://make3d.cs.comell.edu/data.html
Daota Mining e, H
o.:.o Quality Analytics mg
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Epistemic uncertainty

“* Depth regression performance with NYU v, dataset
» NYUwv, dataset = &LH0| CHSt O|O]X] CiO]E{AY
> 1449719| (640x480)A+ O|O|X| Ci|O|E
> O|O|E= (R, G, B, D) + structure classesZ 74
> D =10, 250], #structure classis = 100071 0|4

Make3D | rel | rms | logio NYU v2 Depth ‘ rel ‘ rms ‘ logo | b1 ‘ b2 ‘ d3
2 - - _
Karsch et al. 0.355 | 9.20 | 0.127 E:é?ﬁﬂ;"éf‘ ;1. el i 54.2% | 82.9% | 91.4%
Liu et al. 0.335 | 9.49 | 0.137 Liu et al. 0.335 | 1.06 | 0.127 - - -
Li et al. [35] 0.278 | 7.19 | 0.092 Liet al. 0.232 | 0.821 | 0.094 | 62.1% | 88.6% | 96.8%
; . - - 7 Eigen et al. 0.215 | 0.907 - 61.1% | 88.7% | 97.1%
Laina et al. 0.176 | 446 | 0.072 Figen and Fergus (321 | 0.158 | 0.641 | - | 76.9% | 95.0% | 98.8%
This work: Laina et al. 0.127 | 0.573 | 0.055 | 81.1% | 95.3% | 98.8%
DenseNet Baseline 0.167 | 3.92 | 0.064 , This work: SR
+ Aleatoric Uncertaimy 0.149 | 3.93 | 0.061 DenseNet. Baseline ) 0.117 | 0.517 | 0.051 | 80.2 o 05.1 T 08.8%
E . St . U te . t 0 162 3 87 0 064 + Aleatoric Uncertalnt}‘ 0.112 0.508 0.046 81.6% 05.8% 08.8%
+ Bpistenuc Lncertainty | . . Mo + Epistemic Uncertainty | 0.114 | 0.512 | 0.049 | 81.1% | 95.4% | 98.8%
+ Aleatoric & Epistemic | 0.149 | 4.08 | 0.063 + Aleatoric & Epistemic | 0.110 | 0.506 | 0.045 | 81.7% | 95.9% | 98.9%

(a) Make3D depth dataset [25]. (b) NYUv2 depth dataset [23].

https://cs.nyu.edu/~silberman/datasets/nyu_depth v2.html
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“* Depth regression performance metric
|D-D|
D

> REL (average relative error) = %Z

> RMS (root mean squared error) = \/%Z(D — 15)2

> log,, (average log,, error) = %ZUOQmD - 109105|

Make3D | rel | rms | logio
Karsch et al. [33] 0.355 | 9.20 | 0.127
Liu et al. [34] 0.335 | 9.49 | 0.137
Li et al. [35] 0.278 | 7.19 | 0.092
Laina et al. [26] 0.176 | 446 | 0.072
This work:
DenseNet Baseline 0.167 | 3.92 | 0.064
+ Aleatoric Uncertainty | 0.149 | 3.93 | 0.061
+ Epistemic Uncertainty | 0.162 | 3.87 | 0.064
+ Aleatoric & Epistemic | 0.149 | 4.08 | 0.063

(a) Make3D depth dataset [25].

Data Mining e, "
o.:.o Quality Analytics f}:d

Heteroscedastic uncertainty

Aleatoric uncertainty {
: Homoscedastic uncertain
Uncertainty Ly
Epistemic uncertainty
NYU v2 Depth ‘ rel ‘ rms ‘ logg | 84 ‘ 8o ‘ a5
Karsch et al. [33] 0.374 | 1.12 | 0.134 - - -
Ladicky et al. [36] - - - 54.2% | 82.9% | 91.4%
Liu et al. [34] 0.335 | 1.06 | 0.127 - - -
Liet al. [35] 0.232 | 0.821 | 0.094 | 62.1% | 88.6% | 96.8%
Eigen et al. [27] 0.215 | 0.907 - 61.1% | 88.7% | 97.1%
Eigen and Fergus [32] 0.158 | 0.641 - 76.9% | 95.0% | 98.8%
Laina et al. [26] 0.127 | 0.573 | 0.055 | 81.1% | 95.3% | 98.8%
This work:
DenseNet Baseline 0.117 | 0.517 | 0.051 | 80.2% | 95.1% | 98.8%
+ Aleatoric Uncertainty | 0.112 | 0.508 | 0.046 | 81.6% | 95.8% | 98.8%
+ Epistemic Uncertainty | 0.114 | 0.512 | 0.049 | 81.1% | 95.4% | 98.8%
+ Aleatoric & Epistemic | 0.110 | 0.506 | 0.045 | 81.7% | 95.9% | 98.9%

(b) NYUv2 depth dataset [23].
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Epistemic uncertainty

% Semantic segmentation
> HIF2|0i| LSt 6i=0]| high aleatoric uncertainty

> 0|=0| E2 520 high epistemic uncertainty

Input Image  Ground Truth  Semantic Aleatoric Epistemic
Segmentation  Uncertainty  Uncertainty
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“* Semantic segmentation performance with CamVid dataset
» CamVid dataset 2 =20] Cigt 0|0]X| G|O|E{Al
> 600712| (360 x480)x} 0|0|X]| GH|O]E
> O0|El= (R, G, B) + structure classesZ 1A
> #structure classis = 11 (32)

CamVid | ToU NYUv2 40-class | Accuracy | IoU
SegNet [28] 46.4 o
FCN-8 [29] 57.0 SegNet [28] 66.1 23.6
DeepLab-LFOV [24] 61.6 FCN-8 [29] 61.8 31.6
[B)z_llyesiaré ?;?gNet 122 2}% Bayesian SegNet [22] 68.0 324
ilation8 |3 5.2 : or1e 2]
Dilations 4 FSO [31] 06 ] Eigen and Fergus [32] 65.6 34.1
DenseNet [20] 66.9 This work:
This work: DeepLabLargeFOV. 70.1 36.5

DenseNet (Our Implementation) | 67.1 + Aleatoric Uncertainty 70.4 37.1
+ Aleatoric Uncertainty 67.4 + Epistemic Uncertainty 70.2 36.7
+ Epistemic Uncertainty 67.2 + Aleatoric & Epistemic 70.6 37.3
+ Aleatoric & Epistemic 67.5

(a) CamVid dataset for road scene segmentation. (b) NYUv2 40-class dataset for indoor scenes.

http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/
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Epistemic uncertainty
. . . .
< Semantic segmentation performance metric
> loU = area of overlap/ area of union
area of overlap
area of union
CamVid | ToU NYUv2 40-class | Accuracy | IoU
SegNet [28] 46.4 —
FCN-8 [29] 57.0 SegNet [28] 66.1 23.6
DeepLab-LFOV [24] 61.6 FCN-8 [29] 61.8 31.6
[B)iil)’eﬁlafé ?%‘NET 122 gf% Bayesian SegNet [22] 68.0 324
ilation8 |3 5.2 B or1e [37]
Dilations 4 FSO [31] 06 ] Eigen and Fergus [32] 65.6 34.1
DenseNet [20] 66.9 This work:
This work: DeepLabLargeFOV 70.1 36.5

DenseNet (Our Implementation) | 67.1 + Aleatoric Uncertainty 70.4 37.1
+ Aleatoric Uncertainty 67.4 + Epistemic Uncertainty 70.2 36.7
+ Epistemic Uncertainty 67.2 + Aleatoric & Epistemic 70.6 37.3
+ Aleatoric & Epistemic 67.5

(a) CamVid dataset for road scene segmentation. (b) NYUv2 40-class dataset for indoor scenes.
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Epistemic uncertainty

< Uncertainty calibration plots (x—axis: predicted probability, y—axis: True probability)
> ol plotS E6if ™5t uncertainty?| EFXEMS sl01&t 4= Q)2

M
> Epistemic + Aleatoric 2 25 ArEol0{ REEot AL, £IE uncertainty/} 712 EfHet A= 201

[y
=]

1.0

Aleatoric, MSE = 0.031 == Non-Bayesian, MSE = 0.00501

08| === Epistemic, MSE = 0.00364 0. Aleatoric, MSE = 0.00272
- == Epistemic, MSE = 0.007
§ 0.6 0.6 - Epistemic+Aleatoric, MSE = 0.00214
3
o
QU 044 0.4 4
w

0.2 0.2+

0.0 T T T T 0.0 T T T T

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Probability Probability
(a) Regression (Make3D) (b) Classification (CamVid)
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. Aleatoric uncertainty
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Epistemic uncertainty

“* Aleatoric and epistemic uncertainties for a range of different dataset combinations
> Aleatoric uncertainty= 8t H|O|E{7F S7FHE £ 4~ G111, epistemic uncertainty= & 4~ QICH= 71
> SKESOOIEM 37|1E (4, %, 1)= ZEoHH A
> Make3D dataset: ALY, 12| H|0|E|/ NYU v, dataset: AIL{ H|O|E] / CamVid dataset: =2 3-8 G|0|E

o[

H
o

Train Test Aleatoric | Epistemic Train Test Aleatoric | Epistemic logit
dataset dataset RMS | variance | variance dataset dataset loU | entropy | variance (x10%)
Make3D /4 | Make3D | 5.76 0.506 1.73 CamVid/ 4 | CamVid | 57.2 0.106 1.96
Make3D /2 | Make3D | 4.62 0.521 4.38 / CamVid/2 | CamVid | 62.9 0.156 1.66 /
Make3D Make3D | 3.87 (0.485 2.78 CamVid CamVid | 67.5 0.111 1.36
Makk‘.?nD /4 | NYUv2 - (.388 15.0 CamVid/ 4 | NYUv2 - 0.247 10.9
Make3D NYUv2 - 0.461 4.87 CamVid NYUv2 - 0.264 11.8
(a) Regression (b) Classification
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o.:.o Quality Analytics I’}:d




I Bayesian Neural Networks

Bayesian Neural Networks for Computer Vision Critic

“* Uncertainty

> 0| Z2taldPl epistemic uncertaintyS B2 £2F OfL|2f, H|0[E{2] 22Had?l aleatoric uncertaintyS 2 EE

“* Model performance
S M&510] overfittingS &X|

» Dropout?} L2 regularization term= A&
> O] E5MIM9I gpistemic uncertaintyS EE25H= ™M EEEIE T 712 G| 242 ool 2E oS 2

2 A2517| R0, outlier®il CHEH 20| 7ts
17

> Heteroscedastic aleatoric uncertaintyE loss function0] BIg&tO 2 L2 2 ol 1= Jhs

o
Hd
i

¢ Disadvantages
> Dropout rate0f] 2|ZH01 At =
> DH 2EH0| {HZ 5= UL, standard neural netAZHL} ak5 AlZH @2 A&

X5l architecture 7L LHOIAZE BNN 18 715
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Uncertainty

Bayesian approach

Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning

Non—Bayesian approach

Simple and Scalable Predictive Uncertainty
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Abstract

e i ol + mamaiedly  Hoe ahoro s s ey e O —
o Byoan ol ol < ey 5, curut e oen eroneonly iy i oy AR D e o (N s e o e sy
consinty, but ussally come with 3 probibitive tainty accounts for uncertainty in the model - uncertainty which can be explained ahived. lmprm\l\o ;xrmmum- on a wide spectrum of tasks. Quantifying pr

computationl cost. I this paper we develop 3
mew theoretical framework casting dropout rain-

in deep neursl nevworks (NNs) = approxi
maste Bayesian inference in deep
cesses. A disect resul of this theory gives s
tools 10 model uncertiny with dropout
envacing nformation from exitin odels it
has been tirown away o fas. Th
the probiem of regresensing uncertaincy in deep

b softmax output (fig. 1). Passiag 3

point estimate of a function (solid line 13) through a sofi-

ma (solid line 1b) resaults in extrapolaio
alidence for points far from the 15

cample would be classified as cliss | wih probability 1

However, pusss

a softrmax (shaded area 15) better r

Madel uncertsinty is indispensable for the deep learn

well. With esnd we can

eomplexity or test securacy. We perform un ex-
tensive sty of the properties of dropoul’s un-
enainty. Various network architectures and non-
linearities are assessed un tasks of regression
ANIST a5 an example.
predic-
ikelihood and RMSE compared 1o ¢
isting state-of-the-ant methes, and finish by us-
dropour's uncertainty in deep resnfoncement
Searnis

1. Introduction

Deep learning has sltracted tremendons atler
wearch

tance
With

of Bayesian uncertainty (Herzo

hers in fielde such 3 physics. biolo

and m
turing, 1o name a few (Baldi etal 2014; Anjos etal . 3015
Be

1), Tools such as neural networks
cavalutionsl neural networks

ating
(Kesywindks & Altsman, 2013 €
the recent abift in many of these felds towards the wse
& Ostwald, 2013; Trat-

=

mational Conference on Machine
ek Y. TR 3018 IR WA et

ot v vy e e

repesviin, 2010). With uncensinty information s age

can decide when to exploit and when to explore ils env
ronment. Recent advances in RL have made use of NNs for
o approsimation. These are functions th
aimmase the quality of diflerent sciions an agent can take.
Epsilln greedy search is often used where the agent selects
s best action with some probubilly and explores othe
wise. With uncertsinly eshmates over the .
fanction, techaigues such a3 Thompson sampling (Thomp-
son, 1933) can be used 10 learn much faster

Quuslue

Bayesian probability theory offers us mathenatically

b & prohibitive computationsl cost. 1L is
perhups surprising then that # is possible 10 cast recen

deep learning tools o Bayesian models — without chan,
i either the madels or the eptimisation. We show th;
the e of dropout (und s v INs can be inter
preted as & Bayesian appeoxination of a well known prob-

vay given enough dat. Traditonaly it s becn difcull o mode cpstemic
sty i conpuer vision. but wih pew Baycsian decp leaming tols this
udy the benefits of me epistemic vs. aleatoric un-

in HJ)e»un aep ‘em.m ol for i . For i we presens

aBayesi learning n.memm“mm ping input dependent siestori uncer

ey wgther with ep i ncertaney. We sudy models e fra

il perpixl senaatic semention s ond i regresson tasks. Furier, o o

leads to new loss functions for these tasks, w

e mmpmeﬂ e iamed aA(enwunn This ke th o mors ot o l\nhy

data, also giving new

benchmarks.

mmm,

1 Introduction

Undersanding what a model dos not know s crial part of many machine eaming systes.
foday, deep lea m pow ‘map high di-
eons ey unu) o outputs Honcre o nuppms\u{z e ke o adly and assumed
10 be acurc, whih i no vyt cus, 1 o recent exanples his s ad disastrous con-
sequences. In May 2016 there was the first fatality from an assisted driving system, caused by the
percepion system confusing the whit side of e fo Pight sy 11 In a second recent ex-
erroneous! African Americans as gorillas [2
raising concerns of racial discrimination. If both these algorithms were able (o assign 4 high el
G uncertainsy 1o hel amroncous predicions, then the syslm may have been able 1o make
decisions and likely avoid disaster

Quantifying uncertainty in computer vision applications can be largely divided into regression set-
tings such as depth regression. and classification settings such as semantic segmentation. Existing
s to ol sty in sl sting n compier o nloe priele Ao and
vl rndom fiekds 3,41 However many modem appications mandate e weofdep lear:
Xt ith gt
mcemiy e e does ot llow mr unEean oty mpreentton n regaion sekiogs o
mpl ofte core vectors, which do ot
Seceaily e ode oy For o slingS uncnam ca b Sapred Wth Bosn
dep !.-umm\r approaches — which offer a practical framework for understanding uncertainty
Learning models (6],

n mye»mn modeling, there are two main types of uncertainty one can model [7]. Aleatoric uncer-
sy captes o lren i the obratons. Tis coud be for exampe srsor o o o
fetng n uncerzaty which cannot b educed vn i o dals wee 0 be cllecid On

he iher hand, episemi¢ unceninty accounts Fo unceraity in the model parameters - unceranty

315t Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

icive morrtainey in NN o2 challengingand et ursoved panm e
NN, which leam a distribution over weighis. of the.

for 1t madi
tions 1o the training procedure and are computationally expensive comparad to
standand (non-Bayasian) NNs. We propose an allernaive (o mw\un NN that
is simple to implement., readily paralleliZzble, requires very itk hyperparameter
tuning. and yi ds high quality predictve uncerainy estimaies. Througha srics

that

our method produces wall_calibrated uncertainty estimates which are as good or

better than spproximate Bayesian NNs. To assess robustness (0 dataset \mn we

evaluate the predictive uncertainty on t2st examples from know:

distibutions, and show that our method is able 10 express higher incemtanty on
We wur method by

evaluating predictive uncertainty estimales on ImageNeL

1 Introduction

Doxprenal aetorks (NN v e sa-of -t prtomnance o  whe vaeyofmachie
leaming tasks [35] and are becoming increasingly popular in domains such as computer vision
[ ch recoanition [25], natural language processing [4: cimformatics [ £1]. Despte
improssive accuracies in supervised keaning benchmarks. NN are poor at quantifyng prediciive
unCetin, ad 1o prodice rerconient prdicions. Overconfl ncomect prdicioms canbe
harmful o offensive [3]. hence proper uncertainty quantification is crucial for practical applications.
Evaluati redictive uncertainties is challenging as the ‘ground fruth’ uncertainty
‘s“mﬂbbﬂﬂ lhunhv “hot fvaizble. I this work, e shall foots upen o valuation measures tha
> motivated by practical applications of NNs. Firstly, we shall examine ealibration [12. 13], a
fmuuumnlnuunn of uncertainty which measures the discrepancy between subjective forecasts and
(empirical) long-run frequencies. The quality of calibration can be measured by proper scaring rules
107] s 2 o predicne probbilies and e it scone [9), Nets that s s ancrthogonsl
concem to aceura oS predctions may he eurse 48 et mscalibraied 3 ce sera.
‘The second notion orqnau of we consider the
predictive uncertainty 10 domain shifl (also Teferred to as out-of.listribution exampies [13)). that
measuring if the network knows what it nonws. For exampie, if a retwork trained on one dataset is
aluted ona compltly it datet, then the petvorkshoukd otput i prdict uncertany
as inputs from a difereai dalaset would be far away from the training data. Well-calibrated predictions
that are have a number of
(@2 weather forecasting. medical diagnosis).

315t Confercnce on Newral Informstion Processing Systems (NIPS 2017), Loag Beach, CA, USA.
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Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning
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In mye»unmndelm there are two main types of uncertainty one can model [7]. Aleatoric uncer-
tainty captures noise inherent in the observations. This could be for example sensor noise or motion
noise, resulting in uncertainty which cannot be reduced even if more data were to be collected. On
the other hand, episiemic uncertainty accounts for uncertainty in the model parameters — uncertainty
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Simple and scalable predictive uncertainty estimation using deep ensembles
E Lakshminarayanan, A Pritzel .. - Advances in neural ..., 2017 - papers.nips.cc

Deep neural networks (MMNs) are powerful black box predictors that have recently achieved

impressive performance on a wide spectrum of tasks. Quantifying predictive uncertainty in

MMs i= a challenging and yet unsolved problem. Bayasian NMs, which learn a distribution ...
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< Ensemble= 0[&0ot0{ koA uncertainty 223
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Simple and Scalable Predictive Uncertainty
Estimation using Deep Ensembles

Balaji Lakshminarayanan  Alexander Pritzel Charles Blundell
DeepMind
{balajiln,apritzel,cblundell }Ogoogle. com

Ahstract

Deep neural networks (MNs) are powerful black box predictors that have recently
achieved impressive performance on a wide spectrum of tasks. Quantifying pre-
dictive uncertainty in NNs is a challenging and vet unsolved problem. Bayesian
NNs, which learn a distribution over weights, are currently the state-of- the-art
for estimating predictive uncertainty: however these require significant modifica-
tions to the training procedurz and are computationally expensive comparad to
standard (non-Bayesian) NNs. We propose an allernative to Bayesian NNs that
is simple to implement, readily parallelizable, requires very little hyperparameter
tuning. and vields high quality predictive uncertainty estimaies. Through a series
of experiments on classification and regression benchmarks, we demonstrate that
our method produces well-calibrated uncertainty estimates which are as good or
better than approximale Bayesian NNs. To assess robustness to dataset shift, we
evaluate the predictive uncertainty on test examples from known and unknown
distributions, and show that our method is able to express higher uncertainty on
out-of-distribution examples. We demonstrate the scalability of our method by
evaluating predictive uncertainty estimates on ImageMNet.

1 Introduction

Deep neural networks (NNs) have achieved state-of-the-art performance on a wide variety of machine
learning tasks [35] and are becoming increasingly popular in domains such as computer vision
[32], speech recognition [25], natural language processing [42], and bioinformatics [2. 61]. Despitz
impressive accuracies in supervised leaming benchmarks, NNs are poor at quantifying predictive
uncertainty, and tend to produce overconfident predictions. Overconfident incorrect predictions can be
harmful or offensive [3]. hence proper uncertainty quantification is crucial for practical applications.
Evaluating the quality of predictive uncertainties is challenging as the ‘ground truth’ uncertainty
estimates are usually not available. In this work, we shall focus upon two evaluation measures that
are motivated by practical applications of NNs. Firstly, we shall examing calibration [12, 13]. a
frequentist notion of uncertainty which measures the discrepancy between subjective forecasts and
(empirical) long-run frequencies. The quality of calibration can be measured by proper scoring rules
[17] such as log predictive probabilitizs and the Brier score [9]. Note that calibration is an orthogonal
COMCEIM to accuracy: a network’s predictions may be accurate and yet miscalibrated, and vice versa.
The second notion of quality of predictive uncertainty we consider concerns genzralization of the
predictive uncertainty to domain shift (also referred to as owt-of- distribution examples [23]), that is,
measuring if the network knows what it knows. For example, if a network trained on one dataset is
evaluated on a completely different dataset, then the network should output high predictive uncertainty
as inputs from a different datasat would be far away from the training data. Well-calibrated predictions
that are robust to model misspecification and dataset shift have a number of important practical uses
(e.g., weather forecasting, medical diagnosis).

31st Conference on Newral Information Processing Systems (NIPS 2017), Long Beach, CA, USA.
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“* Ensemble learning method
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Simple and Scalable Deep Ensembles

< Ensemble learning method + uncertainty (aleatoric uncertainty) = Deep ensembles
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Aleatoric uncertainty
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Simple and Scalable Deep Ensembles

“* Deep Ensembles architecture
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Mini—batch

Mini—batch

Mini—batch

N g N

He, (X)
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ag, (x) ag (x)
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M
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M
1
o5 (x) = 3 z (0 (x) +pg (%)) — pg(x)
m=1

Uncertainty
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“* Deep Ensembles with scoring rule
» Loss functions 7+46t= 2PH0|AM scoring rule H|QF

> Scoring rule: 0= 240 = M, loss0| HHE et
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** Regression
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» Negative Log-likelihood(NLL)

ol MSE EH

Uncertainty regularization
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Residual’'s weight
giznlfth;i/r\‘;]r;:ﬁyﬂcs '}:d

O|l=Hd
M-

I S AMAAF QIHEMO] [oss functionO| o R4S DHESH

+» Classification
> AlX| label2| one—hot HIE{2} 0| ==& AO|2]

MSE (mean squared error)
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Simple and Scalable Deep Ensembles
“* Deep Ensembles with adversarial training
> Adversarial training= Y& 2| data augmentation B
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N

“* Deep Ensembles training procedure
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Algorithm 1 Pseudocode of the training procedure for our method

. > Ler each neural network parametrize a distribution over the outputs, i.e. pg(y|x). Use a proper

scoring rule as the training criterion ((0,x,y). Recommended default values are M = 5 and

€ = 1% of the inpur range of the corresponding dimension (e.g 2.55 if input range is {0,255]).

Initialize 64, 65. . ... # s randomly

for mm =1: M do > train networks independently in parallel
Sample data point 72,, randomly for each net > single n., for clarity, minibatch in practice
Generate adversarial example using X;lm =Xy, +€ sign(vxnm U Om,Xn,, + Un,, ))
Minimize ((6p,, Xn,,, Yn,, ) + ((Om. xﬁlm . Un,, ) W.LL Oy > adversarial training (optional)

Loss function, U[E®|3 7i+= M, adversarial training ratio € 2]

ZI HEF S| of2talH =7|st

M7H2] HIEXF01| Chall Hi= 3 (SEAC = HEHXE| 7ts)
4. Tx| C|o]E{ MojM Zt HERKT S =haAl717] /e mini-batch Ci|O|E{A 715
5. S mini—batchdi| LSt adversarial example 44435104 H|0|E| SZ (optional)

6. Score rule®! lossE XA 3} 61=E HIERA OI2H0|E ek&

=

el

Deep ensembles
Adversarial training

Score rule

hcol
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% Histogram of the predictive entropy on test examples Not-MNIST
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“ Uncertainty
> BNNOIA| It2I0[ElS] SRS 7P86H= 24 KPS0l T 55
>  NN-Z0i| CHet M|2F 210] ensemble tA=Z ZHEISHA| uncertainty 22

“* Model performance
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I Appendix

Posterior Approximation using variational inference

X BayeS’ Rule Wnatwe know: Likelihood(Model), Prior(Assumption)
What we do not know: Posterior, Evidence

What we want know: Posterior

_ Likelihood  Prior
Posterior p (Y |X, W)p (W)

This integration is not computable in general

WilX,Y) =
POVIXY) = =0 DYIX) = j p(Y|X, W)p(W)dw
Evidence Evidence
Our goal
Posterior Bayesian networks are easy to formulate,

p(y*|[x*,X,Y) = jp(y*|f*)p(f*|x*,W)p(W|X, Y)df » dw but difficult to perform inference in

Posterior
= [ POl WyPOWIX, Vydw
NN output
..:.. gigﬁlnh;l/r\‘r‘::ﬁyncs r}:d
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Posterior Approximation using variational inference

“ Bayes’ Rule

» Methods for Intractable Posterior

True Posterior Sampling—based Approximate Inference
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p(W|X,Y) =

p(Y|X, W)p(w)
p(Y|X)

Wy, Wi, Wy, -, Wi~p(W|X, Y) qGe(W) =~ p(W|X,Y)
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I Appendix

Posterior Approximation using variational inference

“ Bayes’ Rule

» Methods for Intractable Posterior

True Posterior Sampling—based Approximate Inference
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Naive Monte Carlo Metropolis—Hastings Laplace Approximation
Rejection Sampling Gibbs Sampling Expectation Propagation
Importance Sampling Reversible-Jump MCMC Variational Inference
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B Appendix

Posterior Approximation using variational inference

+*»» Variational Inference

» Approximation by using an “easier” distribution gg (W)
Variational distribution, where 8 are the variational parameters

A family of functions (Q)

Posterior

(qo(W)&p (WX, Y))

Variational distribution

O Posterior density function

Most similar-funetion
(approximate posterio
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I Appendix

Posterior Approximation using variational inference

+*»» Variational Inference

» Approximation by using an “easier” distribution gg (W)
Variational distribution, where 8 are the variational parameters

A family of functions (Q)

How similar are Variational distribution and Posterior ?

Most similar function
(approximate posterior)

O Posterior density function
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] Why Kullback-Leibler Divergence?
- Appendlx - Because it allows us to derive a cost that is tractable to optimization

Posterior Approximation using variational inference Not without paying a price though

+*»» Variational Inference

» Approximation by using an “easier” distribution gg (W)
Variational distribution, where 8 are the variational parameters

A family of functions (Q) _ _
Kullback—Leibler Divergence
(Similar between two probability distributions)

Posterior
KL(qe(W)|lp(W|X,Y))

Variational distribution

Most similar function
(approximate posterior)

O Posterior density function
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] Why Kullback-Leibler Divergence?
- Appendlx - Because it allows us to derive a cost that is tractable to optimization

Posterior Approximation using variational inference Not without paying a price though

+*»» Variational Inference

» Approximation by using an “easier” distribution gg (W)
Variational distribution, where 8 are the variational parameters

A family of functions (Q) _ _
Kullback—Leibler Divergence
(Similar between two probability distributions)

Posterior
qe(W)* = argmin KL(qga(W)|lp(W|X,Y))

9€Q  \/zriational distribution

Most similar function
(approximate posterior)

O Posterior density function
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Bl Appendix d6(W)* = argmin KL(qe(W)Ilp(W|X, 1))

Posterior Approximation using variational inference 4€0

«* Variational Inference
> Approximation by using an “easier” distribution qg (W)

q9(W) p(X,Y|W)p(W)

KL(qeW)|Ip(W|X, 1)) = f 40 (W)insr gy 4w PIVINY) == %)

qe(W)p(X,Y) W
p(X, Y[W)p(W)

= j qe(W)in

qo(W)
p(W)

= [(aowyin 22 dw + | ap (0 1w — [ a9 Wi GCE, VWD)
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Bl Appendix d6(W)* = argmin KL(qe(W)Ilp(W|X, 1))

Posterior Approximation using variational inference 4€0

+*»» Variational Inference

> Approximation by using an “easier” distribution g (W)

qo (W)
p(W)

KL (g W) [p(WIX, V) = f aen 382 4y 4 j 46 (W) In(p(X, V))dw — f 46 (W)in (p(X, YIW))dw
In(p(X, 1)) = KL(ge(W)||p(WIX, 7)) — KL(qge (W) |p(W)) + f g6 (W)In (p(X, YIW))dw

In(p(X,Y)) = —KL(qge(W)||[p(W)) + f qo(W)in (p(X,Y|W))dw (KL(qe(W)||p(W|X,Y)) = 0)

In(p(Y1X)) = —KL(ge(W)][p(W)) + j 46 (W)In (p(¥]X, W) dw

Evidence Evidence Lower Bound (ELBO)
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I Appendix

Posterior Approximation using variational inference

+*»» Variational Inference

> Approximation by using an “easier” distribution g (W)

In(p(X,Y)) = KL(qgeW)||[p(WIX,Y)) — KL(qg(W)|[p(W)) + ] qe(W)In (p(X,Y|W))dw

Evidence KL Divergence Evidence Lower Bound (ELBO)
(Constant) (Nonnegative)

T f Minimizing KL Divergence = Maximizing ELBO
KL(gg(W)lIp(W|X,Y))

A 4

ln(p(X, Y)) : constant
ELBO
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Posterior Approximation using variational inference

+*»» Variational Inference

> Approximation by using an “easier” distribution g (W)

In(p(X,Y)) = KL(qgeW)||[p(WIX,Y)) — KL(qg(W)|[p(W)) + ] qe(W)In (p(X,Y|W))dw

Evidence KL Divergence Evidence Lower Bound (ELBO)
(Constant) (Nonnegative)
__§ i) 1 Minimizing KL Divergence = Maximizing ELBO

E LB 0 In(p(X,Y)) : constant
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I Appendix

Training Bayesian Neural Networks

“* The objective of Bayesian Neural Networks

qo (W)
p(W)

dw + [ o n(p(x,V)dw = [ ag@W)in (X, YIW))dw

KL(qs (W) Ip(W|X, YY) = j 26 (W)in
Constant

/74
x f q@(W)l"(?((w)) aw — j qo(W)in (p(X,Y|W))dw
_ qe (W)
—_ f g6 (W)In (p(X, YW))dw + f a0

N
== 3" @ Win GOiIF* ))dw + KL(as W [p(W)
i=1

This objective requires us to perform computations over the entire dataset, which can be too costly for large N
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I Appendix

Training Bayesian Neural Networks

“* The objective of Bayesian Neural Networks

N
Minimize = ) [ qo(in (pOrlf* i) dw + KL(as W] [p(W))
i=1

N
=y j g W) in (p(iIf* (x)))dw + KL(qe (W)||p(W))

IES

N
=32 | POWEOIF@O e + Kilas W] [pW))

IES

N
- _Mz In(p il f999 (x,))) + KL(ge (W) |[p(W))

IES
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Reparameterization trick
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I Appendix

Training Bayesian Neural Networks

“* The objective of Bayesian Neural Networks

Algorithm 1 Minimise divergence between gg(w) and p(w|X,Y)

Given dataset XY,

Define learning rate schedule 7,

Initialise parameters # randomly.

repeat
Sample M random variables €; ~ p(€), S a random subset of {1,.., N} of size M.
Calculate stochastic derivative estimator w.r.t. ¢:

N
M -

ot

D

Z—logp (902 (x,)) + 5 9 KL (go(w)][p(w

ol Y

Update 6: .
0« 0+ nAd.

8: until # has converged.

=I
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I Appendix

Dropout as Bayesian Approximation

“* The objective of Bayesian Neural Networks

~ N
Luc(8) = =77 ) (il 90 () + KL(qo (W) [p(W))

Les Negative log likelinood

- 1 .
Laropour(8) = =22 > (il f90D (1)) + A IML I + 2, IM 1% + 25 111
IES
Negative log likelihood

9] 9]
%/11”1\’11”2 + A |IM2 1% + A31Ib11% = %KL(%(W)HP(W))

0 . 1 -
3g Laropout (8) = =5 Luc(0) We often use L, regularization weighted by some weight decay 4,

Resulting in a minimization objective with dropout,
we sample binary variables for every input point and for every network unit in each layer
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I Appendix

Training Bayesian Neural Networks

“* The objective of Bayesian Neural Networks

Algorithm 2 Optimisation of a neural network with dropout

1: Given dataset XY,

2: Define learning rate schedule 7,
3: Initialise parameters # randomly:.
4. repeat
5
6

Sample M random variables €; ~ p(€), S a random subset of {1,..., N} of size M.
Calculate derivative w.r.t. 6

1 d o

80— 3 5 logplf ) + 5 (MW + Aol Wl ? + Aal[bIF).
7. Update 6: -
0+ 6+ nAd.

8: until # has converged.

Data Mining e, "
o.:.o Quality Analytics I‘}:Md




