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Abstract—Large-scale labeled training datasets have enabled
deep neural networks to excel across a wide range of benchmark
vision tasks. However, in many applications, it is prohibitively
expensive and time-consuming to obtain large quantities of
labeled data. To cope with limited labeled training data, many
have attempted to directly apply models trained on a large-scale
labeled source domain to another sparsely labeled or unlabeled
target domain. Unfortunately, direct transfer across domains
often performs poorly due to the presence of domain shift or
dataset bias. Domain adaptation is a machine learning paradigm
that aims to learn a model from a source domain that can perform
well on a different (but related) target domain. In this paper,
we review the latest single-source deep unsupervised domain
adaptation methods focused on visual tasks and discuss new
perspectives for future research. We begin with the definitions
of different domain adaptation strategies and the descriptions of
existing benchmark datasets. We then summarize and compare
different categories of single-source unsupervised domain adapta-
tion methods, including discrepancy-based methods, adversarial
discriminative methods, adversarial generative methods, and self-
supervision-based methods. Finally, we discuss future research
directions with challenges and possible solutions.

Index Terms—Domain adaptation, discrepancy-based methods,
adversarial learning, self-supervised learning, transfer learning
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Fig. 1. Anexample of domain shifi. For both image-level object classification
and pixel-wise semantic segmentation tasks, direct transfer of the models
trained on the labeled source domain to the unlabeled target domain results
in a dramatic performance drop.

7hao, S, Yue, X, Zhang, S., Li, B, Zhao, H., Wu, B, ... &Keutzer, K. (2020). Areview of single-source deep unsupervised visual domain adaptation. IEEE Transactions on Neural Networks and Leaming Systems.
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= Domain adaptation
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= Domain adaptation
« Specialized form of transfer learning that aims to learn a model that can generalized

well to unlabeled or sparsely labeled target domain
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= Unsupervised domain adaptation
« Specialized form of transfer learning that aims to learn a model that can generalized

well to unlabeled target domain

Unsupervised
domain
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= Deep Adaptation Networks (DAN) ICML 2015
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= Deep Adaptation Networks (DAN) ICML 2015

Target risk = source risk + domain discrepancy
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= Deep Adaptation Networks (DAN) ICML 2015

Target risk = source risk + domain discrepancy
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= Deep Adaptation Networks (DAN) ICML 2015
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= Deep Adaptation Networks (DAN) ICML 2015

Multiple Kernel variant of Maximum Mean Discrepancies (MK-MMD)
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= Deep Adaptation Networks (DAN) ICML 2015

Multiple Kernel variant of Maximum Mean Discrepancies (MK-MMD)
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= Adversarial
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= Deep-Adversarial Neural Networks (DANN) JMLR 2016

The source risk is expected to be a good indicator of the target risk
when both distributions are similar.
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Ganin, Y., Ustinova, E., Ajgkan, H., Germain, P., Larochelle, H., Lavikette, F., ... & Lempitsky, V. (2016). Domain-adversarid training of neural networks. The joumal of machine leaming research, 17(1), 2096-2030.
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= Deep-Adversarial Neural Networks (DANN) JMLR 2016
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= Deep-Adversarial Neural Networks (DANN) JMLR 2016
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= Deep-Adversarial Neural Networks (DANN) JMLR 2016
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= Deep-Adversarial Neural Networks (DANN) JMLR 2016

The source risk is expected to be a good indicator of the target risk
when both distributions are similar.
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= Deep-Adversarial Neural Networks (DANN) JMLR 2016

The source risk is expected to be a good indicator of the target risk
when both distributions are similar.
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= Jigsaw puzzle based Generalization (JiGen) CVPR 2019

Carlucdi, F. M., Dnnocente, A, Bucdi, S., Caputo, B., & Tommasi, T. (2019). Domain generalization by solving jigsaw puzzes. InProceedings of the IEEE/CVF Confeerence on Computer Vision and Pattern Recognition (pp.

2229-2238).

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark

tis identical to the

the final published version of the proceedings is available on IEEE Xplore.

Domain Generalization by Solving Jigsaw Puzzles

Fabio M. Carlucci'* Antonio D’Innocente®? Silvia Bucci®

Barbara Caputo®*

Tatiana Tommasi*

'Huawei, London  ?University of Rome Sapienza, [taly

talian Institute of Technology

“1Politecnico di Torino, Italy
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Abstract

Human adapiability relies crucially on the ability to
learn and merge knowledge both from supervised and un-
supervised learning: the parents pointr out few important
concepts, but then the children fill in the gaps on their own.
This is particularly effective, because supervised learning
can never be exhaustive and thus learning autonomously
allows to discover invariances and regularities that help
to generalize. In this paper we propose 1o apply a similar
approach o the task of object recognition across domains:
otr model learns the semantic labels in a supervised fash-
ion, and broadens its understanding of the data by learning
from self-supervised signals how to solve a jigsaw puzzle on
the same images. This secondary task helps the network to
learn the concepts of spatial correlation while acting as a
regularizer for the classification task. Multiple experiments
on the PACS. VLCS, Office-Home and digits datasets con-
firm our intuition and show that this simple method outper-
forms previous domain generalization and adaptation solu-
tions. An ablation study further illustrates the inner work-
ings of our approach.

e

M5
IR b

What is - . . And this & ‘3
oo D -z B =

Figure 1. Recognizing objects across visual domains is a challeng-
ing task that requires high generalization abilities. Other tasks,
based on intrinsic self-supervisory image signals, allow to capture
natural invariances and regularities that can help to bridge across
large style gaps. With JiGen we learn jointly to classify objects and
solve jigsaw puzzles, showing that this supports generalization o
new domains.

the community has attacked this issue so far mainly by si-
pervised learning processes that search for semantic spaces
able to capture basic data knowledge regardless of the spe-
cific appearance of input images. Existing methods range
from decoupling image style from the shared object con-
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= Jigsaw puzzle based Generalization (JiGen) CVPR 2019
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Self-supervision-based method

= Jigsaw puzzle based Generalization (JiGen) CVPR 2019
- Self-supervised leaming X | XI=S}S o Jigsaw Puzzle, ECCV 2016
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Self-supervision-based method

= Jigsaw puzzle based Generalization (JiGen) CVPR 2019
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Carlucci, F. l;/l Dinnocente, A., Bucdi, S., Caputo, B., & Tommasi, T. (2019). Domain generalization by solving jigsaw puzzes. InProceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp.
2229-2238).
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Combination method for time series data

This article has been accepted for inclusion in a future issue of this journal. Content is final as p
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= Self-supervised AutoRegressive Domain Adaptation (SLARDA) TNNLS 2022

. with the ion of

Self-Supervised Autoregressive Domain Adaptation
for Time Series Data

Mohamed Ragab™, Graduate Student Member, IEEE, Emadeldeen Eldele™,

Zhenghua Chen™, Senior Member, IEEE, Min Wu

, Senior Member, IEEE,

Chee-Keong Kwoh™, and Xiaoli Li™, Senior Member, IEEE

Abstract—Unsupervised domain adaptation (UDA) has suc-
cessfully addressed the domain shift problem for visual appli-
cations. Yel, these approaches may have limited performance
for time series data due to the following reasons. First, they
mainly rely on the large-scale dataset (i.e., ImageNet) for source
pretraining, which is not applicable for time series data. Second,
they ignore the temporal dimension on the feature space of the
source and target domains during the domain alignment step.
Finally, most of the prior UDA methods can only align the global
features without considering the fine-grained class distribution
of the target domain. To address these limitations, we propose a
SeLf-supervised AutoRegressive Domain Adaptation (SLARDA)
framework. In particular, we first design a self-supervised (SL)
learning module that uses forecasting as an auxiliary task to
improve the transferability of source features. Second, we propose
a novel autoregressive domain adaptation technique that incor-
porates temporal dependence of both source and target features
during domain alignment. Finally, we develop an ensemble
teacher model to align class-wise distribution in the target domain
via a confident pseudo labeling approach. Extensive experiments
have been conducted on three real-world time series applications
with 30 cross-domain scenarios. The results demonstrate that our
proposed SLARDA method significantly outperforms the state-of-
the-art approaches for time series domain adaptation. Our source
code is available at: https:/github.com/mohamedri2/SLARDA.

Index Terms— Autoregressive domain adaptation, ensemble
teacher learning, self-supervised (SL) learning, time series data.
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1. INTRODUCTION

IME series classification (TSC) is a pivotal problem in

many real-world applications including healthcare ser-
vices and smart manufacturing [1], [2]. Several conventional
approaches tried to learn the dynamics of the time series data
for the classification task including dynamic time warping
(DTW), hidden Markov models (HMMs), and artificial neural
networks (ANNs) [3]. Yet, these approaches cannot cope
with evolving complexity of real-world applications. Deep
learning (DL) has shown notable success for time-series-based
applications [1]. [4]. [5]. However, its success comes at the
expense of laborious data annotation. Moreover, DL-based
approaches always assume that the training data (i.e., source
domain) and testing data (i.e., target domain) are drawn from
the same distribution. This may not hold for real applications
under dynamic environments, which is well-known as the
domain shift problem.

The unsupervised domain adaptation (UDA) methods have
achieved remarkable progress in mitigating the domain shift
problem for visual applications [6], [7]. To avoid extensive
data labeling, UDA is designed to leverage previously labeled
datasets (i.e., source domain) and transfer knowledge to an
unlabeled dataset of interest (Le.. target domain) in a transduc-
tive domain adaptation scenario [8]. One popular paradigm is
to reduce the distribution discrepancy between the source and
target domains via matching moments of distributions at differ-
ent orders. For instance, the most prevailing method is based
on the maximum mean discrepancy (MMD) as a distance,
which is calculated via the weighted sum of the distribution
moments [9]. Another paradigm for mitigating the distribution
shift is inspired by generative adversarial networks (GANs).
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B Main idea and algorithms in computer vision
Algorithms (3): “Temporal Ensembling for Semi-Supervised Learning”, ICLR, 2017
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Conclusion
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