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MixMatch: A Holistic Approach to
Semi-Supervised Learning

David Berthelot Nicholas Carlini Ian Goodfellow
Google Research Google Research Work done at Google
dberth@google . com ncarlini@google. com ian-academic@mailfence.com
Avital Oliver Nicolas Papernot Colin Raffel
Google Research Google Eesearch Google Research
avitalo@google.com papernot@google. com craffel@google.com
Abstract

Semi-supervised leamning has proven to be a powerful paradigm for leveraging
unlabeled data to mitigate the reliance on large labeled datasets. In this work, we
unify the current dominant approaches for semi-supervised leaming to produce a
new algorithm, MixMatch. that guesses low-entropy labels for data-augmented un=-
labeled examples and mixes labeled and unlabeled data using MixUp. MixMatch
obtains state-of-the-art results by a large margin across many datasets and labeled
data amounts. For example, on CIFAR-10 with 250 labels, we reduce error rate by a
factor of 4 (from 38% to 11%) and by a factor of 2 on STL-10. We also demonstrate
how Mixhatch can help achieve a dramatically better accuracy-privacy trade-off
for differential privacy. Finally, we perform an ablation study to tease apart which
components of Mix©hMatch are most important for its success. We release all code
used in our experiments

Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., & Raffel, C. A. (2019). Mixmatch: A holistic approach to semi-supervised learning. In Advances in Neural Informatics

Processing Systems (pp. 5049-5059).
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Entropy Minimization

Continuity assumption in semi—supervised learning

= the classifier’s decision boundary should not pass through high—density region
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A Holistic Approach to Semi—Supervised Learning

Algorithm 1 MixMatch takes a batch of labeled data A" and a batch of unlabeled data I/ and produces
a collection X’ (resp. U") of processed labeled examples (resp. unlabeled with guessed labels).

l:

Wk am

Input: Batch of labeled examples and their one-hot labels X = ((zs,p);b € (1,...,B)), batch of

unlabeled examples U = (ub; be(1,...,B )), sharpening temperature 7', number of augmentations K,
Beta distribution parameter o for MixUp.
forb=1to Bdo
Ty = Augment(zy) // Apply data augmentation to x,
for k = 1to K do
up k. = Augment(up) // Apply k'™ round of data augmentation to uy

end for

Q= L Zk Pmodel(¥ | Ub.k;0) // Compute average predictions across all augmentations of wy,

gy = Sharpen(qy,T') // Apply temperature sharpening to the average prediction (see eq. ()
end for

X = ((Zs,pp); 0 € (1,...,B)) // Augmented labeled examples and their labels

U = ((ﬁb‘k, @);be(1,...,B),ke(,...,K)) [/ Augmented unlabeled examples, guessed labels
: W= Sllllfﬁe(Concat(r\:',L?)) /| Combine and shuffle labeled and unlabeled data

r K= (l\'lixUp(/\?.-,W.-);i € (1,..., l/ﬂ)) // Apply MixUp to labeled data and entries from VW

s W= (I\'IixUp(L?,-. Winx)it€(,..., II:II)) // Apply MixUp to unlabeled data and the rest of W
: return X' U’
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Figure 2: Error rate comparison of MixMatch
to baseline methods on CIFAR-10 for a varying
number of labels. Exact numbers are provided
in table 5 (appendix). “Supervised” refers to
training with all 50000 training examples and
no unlabeled data. With 250 labels MixMatch
reaches an error rate comparable to next-best
method’s performance with 4000 labels.
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Figure 3: Error rate comparison of MixMatch to
baseline methods on SVHN for a varying num-
ber of labels. Exact numbers are provided in
table 6 (appendix). “Supervised” refers to train-
ing with all 73257 training examples and no un-
labeled data. With 250 examples MixMatch
nearly reaches the accuracy of supervised train-
ing for this model.
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Ablation 250 labels 4000 labels
MixMatch 11.80 6.00
MixMatch without distribution averaging (K = 1) 17.09 8.06
MixMatch with K = 3 11.55 6.23
MixMatch with K = 4 12.45 5.88
MixMatch without temperature sharpening (7" = 1) 27.83 10.59
MixMatch with parameter EMA 11.86 6.47
MixMatch without MixUp 39.11 10.97
MixMatch with MixUp on labeled only 32.16 9.22
MixMatch with MixUp on unlabeled only 12.35 6.83
MixMatch with MixUp on separate labeled and unlabeled 12.26 6.50
Interpolation Consistency Training [45] 38.60 6.81

Table 4: Ablation study results. All values are error rates on CIFAR-10 with 250 or 4000 labels.

- 55 -



MixMatch

MixMatch

A Holistic Approach to Semi—Supervised Learning

Consistency Entropy
Regularization Minimization
g i

falxy) fﬂ —0.6log0.6 — 0.4l0g0.4 = 0.8563

fo

Augment(x,,) @

--------

(10 — o (Avegmentie)|

folAugment(x,)) I o

—0.9log0.9 — 0.1l0g0.1 = 0.3251

{

nue
L
ﬂ
x
or
ol
0%

Traditional

Regularization (ixup)

fe

09
folxad I T

%

e 1 -
e _ 1 .



Conclusions

< Realistic evaluation of deep semi-supervised learning algorithms, NeurlPS 2018
« 20204 118 26¢ 7|& 3223] 21

Realistic Evaluation of Deep Semi-Supervised
Learning Algorithms

Avital Oliver; Augustus Qdena; Colin Raffel} Ekin D. Cubuk & ILan J. Goodfellow
Google Brain
{avitalo,augustusodena,craffel,cubuk,goodfellow}@google.com

Abstract

Semi-supervised learning (SSL) provides a powerful framework for leveraging
unlabeled data when labels are limited or expensive to obtain. SSL algorithms based
on deep neural networks have recently proven successful on standard benchmark
tasks. However, we argue that these benchmarks fail to address many issues that
SSL algorithms would face in real-world applications. After creating a unified
reimplementation of various widely-used SSL techniques, we test them in a suite
of experiments designed to address these issues. We find that the performance
of simple baselines which do not use unlabeled data is often underreported, SSL
methods differ in sensitivity to the amount of labeled and unlabeled data, and
performance can degrade substantially when the unlabeled dataset contains out-of-
distribution examples. To help guide SSL research towards real-world applicability,
we make our unified reimplemention and evaluation platform publicly available.”

Oliver, A., Odena, A., Raffel, C. A., Cubuk, E. D., & Goodfellow, |. (2018). Realistic evaluation of deep semi-supervised learning algorithms. In Advances in neural information
processing systems (pp. 3235-3246).
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** Regression Task
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Figure 1: Distribution alignment. Guessed label
distributions are adjusted according to the ratio the prediction for a weakly augmented image
of the empirical ground-truth class distribution P y aug &

divided by the average model predictions on un- (green, middle) as the ;ailget for PredlCthlilS on
labeled data. strong augmentations of the same image (blue).

Figure 1: Diagram of FixMatch. A weakly-augmented image (top) is fed into the model to obtain
predictions (red box). When the model assigns a probability to any class which is above a threshold
(dotted line), the prediction is converted to a one-hot pseudo-label. Then, we compute the model’s
prediction for a strong augmentation of the same image (bottom). The model is trained to make its
prediction on the strongly-augmented version match the pseudo-label via a cross-entropy loss.

Figure 2: Augmentation anchoring. We use

[1] Berthelot, D., Carlini, N., Cubuk, E. D., Kurakin, A., Sohn, K., Zhang, H., & Raffel, C. (2019, September). Remixmatch: Semi-supervised learning with distribution matching and
augmentation anchoring. In International Conference on Learning Representations.

[2] Sohn, K., Berthelot, D, Li, C. L., Zhang, Z., Carlini, N., Cubuk, E. D, ... & Raffel, C. (2020). Fixmatch: Simplifying semi-supervised learning with consistency and confidence. .
In Advances in neural information processing systems.
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