본 프로젝트에서는 차량의 디자인에 따라 주행 시 발생하는 상세 풍절음들을 예측하고, 이를 바탕으로 중요한 디자인적 요소를 찾아주는 것을 최종 목표로 하였다.

세부 목표는  3가지 대역의 풍절음 예측, ② 풍절음에 중요하게 작용하는 디자인 요소 탐색으로 총 두 가지이다. 


1.  풍절음 예측

디자인에 따른 풍절음을 예측하기 위해, 자동차의 특징적인 부분을 반영할 수 있는 여러 이미지들을 입력 값으로 사용하였고, CNN기반의 특징 추출기를 이용하여 특징 벡터를 추출하였다. 또한 추출된 특징 벡터들 중 예측값에 가장 중요하게 반영되는 가중치를 연산하는 Self-Attention 모듈과 이를 이용하여 3가지의 주파수 대역을 예측하는 Linear Layer를 이용하여 3가지 대역의 풍절음을 예측하였다.



2. 디자인 요소 탐색

디자인 요소 탐색을 위해서는 가장 중요하게 사용된 이미지 종류와, 그 이미지 안에서도 어떤 부분이 중요했는지에 대한 정보가 필요하다. 이를 위해 Attention Score와 Grad-CAM을 사용하였다. 우선 Attention Score를 이용한 중요 이미지 탐색은 아래 표와 같으며, 주로 사이드 미러의 형태가 풍절음에 중요하다는 것을 알 수 있다. 또한 오른쪽 그림은 중요하게 작용했던 7가지 이미지에 대해 Grad-CAM을 이용하여 각 이미지 내에서 중요한 부분을 탐색한 결과이다.